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CHAPTER 1

OVERVIEW

This document describes the algorithms and mechanisms of the MODEL
Processor, which is a software system performing a program writing
function. The MODEL Processor (hereafter called the Processor) has been
designed to automate the program design, coding and debugging of
software development, based on a non-procedural specifications of a
program module in the MODEL language. As shown in Figure 1.1, a program
module is formally described and specified in the MODEL language, whose
statements are then submitted to the Processor. The set of MODEL
statements describing a program module is refexrred to as a
gpecification. The Processor, performs the analysis (including checking
for the completeness and consistency of the entire specification),
program module design (including generating a flowchart-like sequence of
events for the module), and code generation functions, thus replacing
the tasks of an application programmer/coder. The Processor's
capability to process a non-procedural specification language is Dbuilt
on application of graph theory to the analysis of such specification and
to the program generation task.

Another important function of the Processor is to interact with the
specifier to indicate necessary supplements oxr changes to the submitted
statements.

The Processor produces a complete PL/1 program ready for
compilation as well as various reports concerning the specification and
the generated program. The Processor output reports include a listing
of the specification, a cross-reference report, subscript range report,
a flowchart-like report of the generated program, and a listing of the
generated program, all to be described fully later.
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Figure 1.1 The Overall Procedure For Use of MODEL

Processing of a specification written in MODEL by the Processor
congists of four phases shown in the system flowchart of Pigure 1.2,
which is the first refinement of PFigure 1.1. Some of these phases
represent adaptations of known but state—of-the—art technology, while 1
other phases involve more novel innovations in analysis of the
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specification and in the design and code generation for the application
program.

Each of the four phases depicted in Figure 1.2 is discussed below.
Phases 1: Syntax Analysis of the MODEL Module Specification

In this phase, the provided MODEL specification is analyzed to find
syntactic and some semantic errors. This phase of the Processor is
itself generated automatically by a meta-processor called a Syntax
Analysis Program Generator (SAPG), whose input is syntax rules provided
through a formal description of the MODEL language in the EBNF language
(yet to be discussed). In this manner, changes to the syntax of MODEL
during development can be mode more easily.
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Pigure 1.2 Phases of the MODEL II Processor

. A further task of this phase is to store the statements in a
simulated associative wemory for ease in later search, analysis, and
processing. Some needed corrections and warnings of possible erxors are
also produced in a report for the user. Also, a cross-reference report
is produced.
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A description of the syntax and statement analysis phase is covered
in detail in Chapter 3. )

Phase 2: Analysis of MODEL Specification

In this phase, precedence relationships between statements are
determined from analysis of the MODEL data and assertion statements.
™s specification is analyzed to determine the consistency and
completeness of teh statements. Each MODEL statement may be considered
to be an independent stand-alone statement. The order of the user's
statement is of no consequence., However, in analysis of the statements,
precedenece relationships are determined based on statement components.
These relationships are used to form the nodes and directed edges of an
array graph (yet to be discussed) on which completeness, consistency,
ambiguity, and feasibility of constructing a program can be checked.
Various omissions or errors are corrected automatically, especially in
connection with use of subsctipts. Reports are produced for the user
indicating the data, assertions, or decisions that have been made by the
Processor, or contradictions that have been found. In addition, a
report showing the range of each subscript is generated.

Explanation of this process is covered in Chapter 4 and 5.

Phase 3: Automatic Program Design and Generation of Sequence and
Control Logic

This phase of the Processor determines the sequence of execution of
all events and iterations implied by the specification, using graph
theory techniques. It determines also the sequence and control logic of
the Adesired program. The result of this phase is a flow of events,
sequenced in the order of execution, Thus, the output of this phase is
similar to a program flowchart-like report. At the end of this phase it
is also possible to produce a formatted report of the specification.

This phase is presented in detail in Chapter 6.

Phagse 4: Code Generation

AT this point in the process it is necessary to generate, tailor,
and ingert the code into the entries of the flowchart to produce the
program. In particular, read and write input/output commands are
generated whenever the flowchart indicates the need for moving records.
The assertions are developed into PL/1 assignment statements. Eherever
program iterations and other control structures are necessary, program
code for them is generated. Declarations for object program data
structures and variables are generated. Code is also generated for
recovery from program failures when bad data is encountered Auring
program execution. The product of this phase is a comwplete program in a
high level language, PL/1, ready for compilation and exscution. A
listing of the generated program is produced.




The remainder of this report expands on the above mentioned phases.
Chapter 2 discusses the syntax and semantics of each type of MODEL
statements. Pigure 1.3 provides a tree diagram of the major wmodules.
The name of the modules in this diagram are referenced throughout the
remainder of this report wherever the corresponding task is explained.
As seen at the top of Figure 1.3, a MONITOR governs the execution of the
different phases of the Processor, and does not allow succeeding phases
to proceed without the success of the previous phases. At the second
level of Figure 1.3, the major phases of the Processor are named (1) SAP
(Syntax Analysis Program), Chapter 3; (2) NETGEN (Network Generation)
and NETANAL (Network Analysis), Chapter 4 and 5; (3) SCHEDULE (Schedule
events and generate flowchart), Chapter 6; and (4) CODEGEN (Code
Genexation), Chapter 7. Below this level of PFigure 1.3, the diagram
shows the names of the modules subordinate to each of these phases.
Each of these subroutines is discussed throughout this report.
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CHAPTER 2

SYNTAX AND SEMANTICS OF THE MODEL LANGUAGE

2.1 SIRUCTURE OF A PROGRAM SPECIFICATION

A program specification written in the MODEL language consists of
three major parts: program header, data description, and assertions.
The program header specifies the name of the program and the external
files which store the input or output data of the program. The data
description statements are used to specify the data structure of the
input or output files and the structure of the intermediate results,
The assertions are used to define the values of the intermediate or
output variables specified in the data description statements. Although
the user is encouraged to group statements together and order the parts
in the sequence wmentioned above, the statements in a program
specification can be put in any order, i.e. the order of the statements
is irrelevant to the meaning of the specification. That is one reason
why we call MODEL a non-procedural programming language. In this
section we discuss the statements in the program header. We will
discuss in section 2.2 the data description statements, and in section
2.3 the syntax and the semantics of the assertions. We will discuss in
section 2.4 the use of control variables.

Only the basic MODEL language is described here. Short-hand and
high 1level dialects are not descridbed as they are always translated
automatically into the basic language. The syntax rules of the MODEL
statements will be defined with extended BNF notation. Identifiers
enclosed by the angle brackets ('<' and '>‘') are non-terminal symbols.,
The metasymbols used include:

1. :1:=, it is read as 'is—defined-by’.

2. (...]), a pair of square brackets is used to enclose a string which is
optional,.

3. |, a vertical bar is used to separate alternatives.

4, {...})*, a pair of braces followed by an asterisk is used to enclose a
string which can repeat any times (including zero).

The program header consists of three types of statements, namely

the module statement, the source file statement, and the target file
statement.
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Module Statement

The syntax rule for the module statement is as follows.
<module—statement>::=
MODULE : <identifier> ;

The user—chosen identifier is used as the name of the program being
specified.

Source File Statement

The syntax rule for the source file statement is as follows.
<gource—file—statement>::=

SOURCE [ PILES | PILE ] : <identifier> ( , <identifier> }x ;

The source file statement consists of a list names of files which
serve as the input files of the program. The source files are assumed
stored in external storage devices.

Target File Statement

The syntax rule for the target file statement is as follows.
<target-file-statement,::=
TARGET ([ FILES | FILE ] : <identifier> { , <identifier> }* ;

The target file statement lists the names of files which serve as
the output files of the program. The output files are assumed to be on
external storage and they serve to retain the computation result for
future use.

2.2 DATA DESCRIPTION STATEMENTS

In a non-procedural programming language every variable can only
have a single value. Therefore, different variable names should be
declared for different data involved in the computation. The data
structures in external files, or the schemata of files, can be described
in MODEL with data description satatements. Logically related variables
may also be grouped together as in PL/I. The user must also declare the
data types of the components of a variable in data description
statements. The MODEL language has been designed to relieve the user of
concern for I/0 control. 1In general, I/O can be a complicated part of a
programming language. A few simple mechanisms have been included in the
data description statements to ease the I/0O programming task. Examples
include the ability to describe file organization and to indicate a key
field for direct accessing a record. In section 2.2.1 we will discuss
the way to specify the data type of a variable; in section 2.2.2, the
way to describe data aggregates; and in section 2.2.3, the mechanisms
used for I/0 related programming.
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2.2.1 DATA 'IYPES

The smallest unit of data in a program is a field. A field may
contain a datum of some type supported by the MODEL language. The
available data types includes picture, character, bit string, and
numbers. It is the user‘'s responsibility to select a data type for each
field.

Pield Declaration Statement

The syntax rule for a field declaration statement is as follows,.
<field—declaration-statement> ;::=

<identifier> [ IS ] <field» <data-type> ;
<«field> ::= PFLD | PFIELD
<data—-type> :1:= «type> cleng-spec:
<leng-spec> ::= ( <min-length> [ : <max-length> ] )
«<min-length> ::= cinteger>
<type>: = «pic—desc> | «string-spec> | <num—spec>
<pic-desc> ::= <«pic—type> ' «string> '
<pic-type> ::= PIC | PICTURE
<string-spec> ::= CHAR | CHARACTER | BIT | NUM | NUMERIC
<num—-spec> = <num—type> [ <fixflt> ]
<num—type> ::= BIN { BINARY | DEC | DECIMAL
<fixflt> 1:= PIX | PIXED | FL | FLOAT | PLT
«<max-length> ::= c<integer>

A character string may be of fixed length or variable length. Por
a fixed 1length character string <the -length in byte units should be
specified in the type declaration. A variable length character string
is sgpecified through declaring the range of the possible length of the
string. When a field X of variable length string occurs in an input
file, its length should be specified by an associated control variabie
called LEN.X. '

Example:

A IS FIELD CHAR(6) ;
B IS PIELD CHAR(0:10);

The field A is a string of six characters and the field B is a
variable length character string with maximum length ten. The actual
length of the field B should be specified by a control variable called
LEN.B in some assexrtion.

The available operations for manipulating character strings include
lexicographic comparison, concatenation, and extracting substring. The
discussion for the character string is also applicable to the bit string

data type.

The data types for numeric data include picture, f£floating point
decimal, floating point binary, fixed point decimal, and fixed point
binary. The operations applicable to numeric data are arithmetic
operations, comparison, and conditional definition. It should be noted
that the picture and character typed variables have a printable
representation. Therefore, it 1is suitable for data contained in
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reports, Other numeric data types are generally used for the data
stored 1in the computer system. The PL/I target language incorporate
extensive type conversion and therefore the user is generally relieved
of this concern.

2.2.2 DATA STRUCTURES

Usually there are two ways to group logically related data together
to form data structure. An array contains homogeneocus data elements and
a structure contains heterogeneous data elements. In MODEL a
generalized data aggregate can be used to specify arrays and structures.
The data aggregate is called a group or a record in MODEL language.

Group De¢claration Statement

The syntax rule for the group declaration statement is as follows.
<group—declaration-statement> ::=
<identifiexr> [ IS ] <group> ( «<member-list> ) ;
<group> ::= GRP | GROUP
<mewber—-list> ::= «member> { , member> }*
«<members> ::= cidentifier> [ ( c<occspec> ) ]
<occspec> ::= * | «aminoce> [ : <«maxocc> ]
<minocc> ::= <integer>
<maxoce> 3= cintegex>

In the group declaration statement an identifier is declared as a
data group which contains a list of members. Each member may optionally
repeat some number of times. If a member repeats, it is considered as
an array of one dimension more than the group containing it. There are
three ways to specify the number of repetitions over a dimension of an
array. If the number of repetitions is a constant, then the constant
can be specified along with the array name. When the number of
repetitions is not fixed but the user knows the maximum of it, he can
specify a range for the number of repetitions in the group statement.
If the user does not know the maximum, i.e. where the maximum is an
unknown large value, he can denote the range by an asterisk. When the
number of repetitions is not a constant, it can be defined through some
control variables with keyword prefix such as SIZE or END (refer to
section 2.4) or definition may be omitted if it can be detected based on
an end-of-file indication.

The members of a data group can be fields, or some other data
groups. A data group may be declared as an array of arrays. In order
to reference a unit datum of it, the user has to supply as many
subscripts as the number of array dimensions. Thus the wember field
becomes a multi-dimensional array.

Example:
A IS GROUP (B, C(10)) ;
B IS PIELD CHAR(6) ;
C IS GROUP (D(5), E(1:50), F(*)) ;
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where identifier A is declared as a data group containing two
members B and C. Let us assume that A is a zero dimensional variable.
Since C repesats, it is a one dimensional array. 1Identifier C contains
three wembers, D, E, and F. The member D repeats five times, and the
menber E may repeat a number of times from one to fifty. The member P
has a unknown number of repetitions, so an asterisk is specified as its
number of repetitions. All the members of data group C are two
dimensional arrays.

2.2.3 I/0 RELATED DATA AGGREGATES

In a MODEL specification, the user describes the structures of the
data files with data description statements. The MODEL processor
generates I/0 statements automatically for the source and target files
of the program based on the information in data description statements.

The record deelaration statement is syntactically similar to the
group declaration statement. The only difference is that the keyword
GROUP is changed i» RECORD. A record corresponds to a unit of data
which can be j4iysicaily transferred between external file and main
memory.

The file is the highest-level data structure which could be
declared in a MODEL specification. It is not allowed to have a
structure above *he file. A file structure may consist of substructures
declared w.th group, record, or field statements. A well structured
file declaration will have the file entity on the top 1level. Its
immediate descendants (i.e. members) can be declared either as groups
or records. The groups may contains groups, records, or fields.
Finally on the lowest 1level in the file structure the data should be
declared as fields.

FPile Declaration Statement

The syntax rule for the file declaration statement is as follows,
<file—~declaration-statement> ::=

<identifer> { IS ] PILE [ NAME ] <¢file—desc>

( <member-list> ) ;

<file-desc> ::=

{ KEY [ NAME ] [ IS ] cidentifer> )

( ORG ( IS ] <org-type> ]
<org-type> i1:= SAM | ISAM

A file may have the KEY attribute specified. In that case, the
recoxds in the file are accessed by a part of the record contents. If a
file is keyed, there can only be one record type in the file structure
and one of the field in the record should be declared as the key for
accessing the record. Two types of file organization are supported by
the MODEL language, namely the sequential files and the index sequential
files. A record in an index sequential file can be accessed faster than
in a sequential file if direct accessing is necessary.
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Example:

MODULE: MINSALE;
SOURCE: 'RAN, INVEN;
TARGET: SLIP, INVEN;

TRAN IS FILE (SALEREC(*));

SALEREC IS RECORD (CUSTS,STOCKS,QUANTITY);
CUSTS IS PIELD(CHAR(S));

STOCKS IS PIELD(CHAR(8));

QUANTITY IS PIELD(CHAR(3));
INVEN IS FILE ( INVREC)

KEY STOCKS

ORG ISAM;

INVREC IS RECORD( STOCKS,SALPRICE,QOH);
STOCKS IS FIELD(CHAR(8));
SALPRICE IS FIELD(NUMERIC(S));
QOH IS PIELD(NUMERIC(S));

SLIP IS PILE (SLIPREC(*));
SLIPREC IS RECORD (CUSTS$,STOCKS,QUANT, PRICE,CHARGE);
CUSTS IS PLD (CHAR(12));
STOCKS IS PIELD(CHAR(16));
QUANT IS PIELD (PIC'(11)Z9');
PRICE IS PIELD (PIC'(11)29');
CHARGE IS PIELD (PIC'(11)29');

2.3 ASSERTIONS

Data description statements define the data structures of the
variables involved in a computation. However, the values of the
variables are defined either automatically by input files or manually by
assertions. Basically an assertion is an equation. On the left hand
side of the equal sign there should be either a simple variable or a
subscripted array name which references an array element. On the right
hand side there can be any arithmetic or logical expression whose value
is used to define the variable on the left hand side. The current
regstriction is that the assertion can only be used to define the value
of a field. Operations on the higher level data structures are proposed
to be translated into basic operations (PNPR 60].

2.3.1 SIMPLE AND CONDITIONAL ASSERTIONS

There are two kinds of assertions which can be used to define <the
value of a variable, namely simple assertion and conditional assertion.
The assertions have the same syntax as an assignment statement and a
conditional statement in the PL/I language, respectively. All the
arithmetic and logical operations can be used in cowmposition of

- 13 -

b




R il e

expressions. In addition, the conditional expression of ALGOL language
can be used in composing the expression.

Simple Assertion

The syntax rule for the assertion is as follows.
<agsertion> ::1= ¢simple—assertion»> | <conditional-assertion>
<simple—assertion> ::= «variable> = cexpression> ;
<variable> ::= <simple-variable> | <subscripted-variable>

The variable name on the left hand side of an assertion is called
the target variable of the assertion as its value is defined by the
assertion. All the variables on the right hand side are called the
source varjables of the assertion since their values are used to
calculate the value of the target variable. In the examples shown
below, a conditional expression is used to define the value of variable
M.

Example:
1)A =B+ 5 ;
2) X(I,J) = 4 *I+J;
3) M = [F OK THEN S ELSE O ;

Conditional Assertion

The syntax of the conditional asgsertion is similar to that of an IF
statement in PL/I.
<conditional-assertion> ::=

IF <boolean—expression> THEN cassertion>

[ ELSE cassertion> ]

The conditional assertion has two branches, one after the keyword THEN
and the other after the keyword ELSE. These two branches are
selectively executed according to the truth value of a boolean
expression. Since the purpose of an assertion is to define the value of
a variable, there can only be one target variable in an assertion. In
any case the two branches should define the same target variable.
Therefore, the target variable in any branch of a conditional assertion
should always be the same. It should be noted that the ELSE branch of a
conditional assertion is optional. If it is omitted, the target
variable may be undefined in some casges.

Example:
1) IP I < 5 THEN A(I) = B(I) ;
ELSE A(I) = B(I) + 2 ;
2) IP END.X(J) THEN B = X(J) ;

2.3.2 SUBSCRIPT EXPRESSIONS

The variables used in assertions are either simple variables or
subscripted variables. A specific element of an N dimensional array can
be referenced with the array name followed by N subscript expressions.
In the following we will discuss how the subscript expressions are
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formed and how they are used in composing the assertions.

Subscript expressions are composed of ordinary variables, subscript
variables, and constants with arithmetic operations. The subscript
variable is a special kind of variable. It does not have structure and
it does not hold one specific value. Instead, a subscript variable
assumes integer values in a range from one up to some positive integer.
If the range for a subscript variable is fixed in the whole program
specification, then the subscript variable is called a global subscript.
Oon the other hand, if the range for a subscript variable is to be
determined for each assertion, the subscript variable is called a local
subscript. There are ten system predefined local subscripts ramed SUB1,
SUB2, ..., up to SUB10. There are two types of global subscripts. Oone
of them has the form of qualifying the name of a repeating data
stxucture prefixed with the keyword FOR_EACH. The other is created by
declaring an identifier as a global subscript with the subscript
statement.

Subscript Declaration Statement

The syntax rule for the subscript declaration statement is as
follows.
<subscript—declaration—-statement, ::=

<identifier> IS «subscript> [ ( <occspecs> ) ] ;
<gubscript> ::= SUBSCRIPT | SUB

The subscript expressions are classified into the <following types
according to their forms. In the following, let I denote a subscript
variable, ¢ and k dencte non—negative integers, and X denote an indirect
indexing vector( refer to section 4.2.2,2.) Subscript expressions may be
classified as follows:

1) 1,

2) I,

3) I-k, where k»>1,

4) none of the othex types,
5) X(I1)

6) X(I—c)-k, where c+k=1,
7) X(1-c)~k, where c+k»>l.

The range of a global subscript variable in an assertion may be
declared in a subscript declaration statement. If not declared, the 3
range is derived from an array dimension in which the subscript variable
has been used in a type 1, 2, or 3 subscript expression.

Example: J
1) I IS SUBSCRIPT (10) ; E
B(I) = NMI) ; 1

A global subscript I is declared in the subscript declaration
statement and the range of the value of I is from one to ten. In the 1
assertion, the global subscript I will assume the integer values in
the range declared in the subscript declaration statement.
2) PACT(SUBL) = IF SUBl=l1 THEN 1
ELSE SUBl * PACT(SUB1-1) ;
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The range of the local subscript SUBl will be the same as that
of the first dimension of array FACT because the subscript SUB1
occurred in the term FACT(SUBl) is in a form of type 1 subscript
expression.

‘e use of subscript variables allows us to define all the elements
of an array in one assertion. In the second example above, the whole
vector PACT is defined by the same assertion.

Por multi-dimensional arrays, subscripting array variables may
become tedious. We have adopted the following convention to allow users
to omit subscripts in array references. Wwhen all the array references
in an assertion have the same leftmost subscript expression, which is a
type 1 subscript and when the subscript is not otherwise referred to in
the assertion, then the subscript can be omitted from the assertion
systematically. For example, the following three assertions are
equivalent.

al: A(I,J,K) = 2 » B(I,J,K) + C(1,J) ;
az2: AM(J,K) = 2 *» B(J,K) + C(J) ;
a3d:s A(K) = 2 * B(K) + C ;

2.4 CONTROL VARIABLES

Sometimes it is necessary to refer to attributes of the data, such
as the number of repetitions, the length, or the key for accessing a
record in an index sequential file. In order to allow reference to such
attributes, a number of control variables are included in the MODEL
language. Since the control variables are always related to some
variable, they have a form of a qualified variable, with the name of the
variable as the suffix and one of several reserved keywords as the
prefix. In the following we will assume that X is a variable name
declared in some data description statement. The control variables
which can be formed from X are discussed below.

SIZE.X

If X is a repeating wmember of some data structure, the user can
specify the range by defining the value of a control variable called
SIZE.X. It should be noted that X may be a multi-dimensional array.
SIZE.X defines only the range of its rightmost dimension. The ranges of
the other dimensions have to be defined separately.

SIZE.X is a variable of integer type. Its value is used to specify
the number of repetitions of the rightmost dimension of array X. 1If
X(ri,12,...,In) is an n dimensional array where Il occurs on the most
significant dimension and 1In on the least significant dimension, then
the control variable SIZE.X(Il1,12,...,1k) should be a k dimensional
array with O«<=k«n. The first dimension of SIZE.X has the same range as
the first dimension of array X, the second dimension has the same range
as the second dimension of array X, and so on. The value of SIZE.X
cannot be a function of any subscript Ii with kc¢ic=n, For every n-1
tuple (I1,I12,...,In-1) which corresponds to a possible combination of
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the leftmost n-1 subscripts for array X, the number of elements of array
X with this tuple as their leftmost n-1 subscripts is specified by the
array element SIZE.X(I1,I12,...,Ik).

Example:

A IS GROUP (B(3))
B IS GROUP (C(*))
C IS FIELD ;
SIZE.C(1) = 4 ;
SIZE.C(2) = 2 ;
SIZE.C(3) = 3 ;

LY

SIZE.C C
| 2| | €(1,1) | ©(1,2) | C(1,3) | C(1,4) |
12 | €(2,1) | ¢(2,2) |
131 lq3ASICGJ)ICUJ)I

In the example above, array C is two dimensional. There are three
instances of B in data group A and each instance of B contaings a number
of elements of array C. Correspondingly the range of the first
dimension of array C is a constant three and the range of the second
dimension which may depend on the subscript value of the first dimension
is sgpecified in vector SIZE.C. SIZE.C(1l) equals to four implies that
there are four elements of array C in the first instance of B, the value
of SIZE.C(2) specifies the number of elements of array C in the second
instance of B, and so on.

END.X

If X is a repeating member of a data structure, END.X can be used
to specify the range of the rightmost dimension of array X as
alternative to the use of SIZE.X.

END.X is a boolean array. If X(Il1,I2,...,In) is an n dimensional
array, then the associated control array END.X(I1,I2,...,In) is an n
dimensional array, too. The range of array dimensions of END.X are the
same as the corresponding array dimensions of X. The value of END.X
determines the range of the rightmost dimension of array X in the
following way. For every n-1 tuple (I1,I12,...,In-1) which is a possible
combination of the leftmost n-1 subscripts of array X, there exists a
gsequence of elements in END.X array with the same left n-1 subscript
values, i.e. (END.X(Il,...,In-1,In)| l<=In}. If END.X(Il,...,In-1,m)
is a boolean true and all the elements of (END.X(Il,...,In-1,In)}

l«=In«m} are false, then there are exactly m elements in array X with
(I1,...,In-1) as their leftmost n~1 subscripts. The values in END.X may
depend on the values in array X, i.e. the number of repetition may
depend on the data in X.
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Example:

For the same array C mentioned above, we may use a two dimensional
control array END.C to specify the range of the second dimension of
array C as follows. '

A IS GROUP (B(3)) ;

B IS GROUP (C(*)) ;

C IS FIELD;

END.C(SUB1,SUB2) = IF SUBl=l1 THEN (SUB2=4)
ELSE IF SUBl=2 THEN (SUB2=2)
ELSE IP SUBl=3 THEN (SUB2=3) ;

c
| €(1,1) | ©(1,2) | ¢(2,3) | c(1,4) |
I €(2,1) | €(2,2) |
| €(3,1) | ©(3,2) | ¢(3,3) |

END.C
| F | F | F | T I
| F | T |
] F | F | T |

In the first row of END.C the first boolean true comes in the
fourth element, therefore, the fourth element is the last element in the
first row of array C. Similarly, the second element of the second row
of END.C is true implies that there are only two elements in the second
row of array C.

Example:

We will show how the END contrxol variable can be used to specify a
varying number of repetitions by finding the greatest common divisor of
two positive integers M and N. Euclid's algorithm is used here.

MODULE: TEST ;
SOURCE: IN ;
TARGET: OUT ;

IN IS PILE (INR)
INR IS REC(M,N) ;

OUT IS PILE (OUTR) ;
OUTR IS REC(GCD) ;
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WK IS GROUP (WKG(*)) ;
WKG IS GROUP (WK1,WK2) ;
(M,N,GCD,WK1,WK2) IS PIELD NUM(4) ;

WK1(SUB1) = IP SUBl=1 THEN M
ELSE IF WK1(SUBl-1)>WK2(SUB1-1) THEN
WK1( SUB1-1 )-WK2( SUB1-1)
ELSE WK2(SUB1-1) ;

WK2(SUBl1) = IFP SUBl~1 THEN N
ELSE IF WK1(SUBl-1)>WK2(SUBl1-1) THEN
WK2(SUBl1l-1)
ELSE WK1(SUBl1-1) ;

END.WKG(SUBl) = WK1(SUBl )=WK2(SUBl) ;
IF END.WKG(SUBl) THEN GCD = WK1(SUBl) ;

POINTER.X

If X is a record of a keyed input file P, the instances of the
record X can be selected and ordered according to the value of a control
variable POINTER.X. The control variable POINTER.X has the same number
of dimensions and the same shape as the array X. For every value in the
control variable POINTER.X, a recoxrd instance in the file F with that
key value will be presented in the corresponding element of array X. 1In
order to use POINTER control variable for selecting and ordering the
recoxds in a keyed file, one of the field in records should be declared
as a key in the file declaration statement. The content of the POINTER
control variable is us=1 as the key to access the corresponding record

from the keyed file.

A keyed file may either have sequential or index sequential
organization. If the file is index sequential, the records stored in
the file may be in any order. However, if the file is actually a
sequential file, then the records have to be sorted in an ascending
order according to the key field and the keys used to access the records
should also be sorted in the same order. This is an implementation
restriction. Without this restriction we can not read all the recorxds

we want from that file in one pass.

When a keyed file is declared as a source and a target file, the
target file will be an updated version of the source file. Effectively
only the records being selected may be modified. Por the rest of the
file they are kept intact in the target file. This mechanism makes the
update of sequential or index sequential file much easier to specify.
Since a key value may occur more than once in the POINTER array, the
corresponding (one) record will be accessed, possibly updated, and
written out several times. 1In order to make surxe avery update to the
same record is effective, the updates have to be done sequentially. We
can envisage that a new version of the keyed file is created after one
record is updated and every update is done on the most recent version of

the file.

Example:
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In the following MODEL specification a source file INVEN is
declared as a keyed file. STOCKS in the record INVREC is the key field
of INVEN file. Since the control variable POINTER.INVREC is equal to
the field STK in file 'I'RAN, the INVREC records will be ordered according
to the values in the STK field.

MODULE: MINSALE ;
SOURCE: TRAN, INVEN ;
TRAN IS FPILE (SALEREC(*)) ;
SALEREC IS RECORD (CUSTS,STK,QUANTITY) ;
CUSTS IS FIELD(CHAR(S5)) :;
STK 1S PIELD(CHAR(S8)) ;
QUANTITY IS PIELD(CHAR(3)) :

INVEN IS PILE ( INVREC(*))
KEY STOCKS
ORG ISAM ;

INVREC IS RECORD(STOCKS,SALPRICE,QOH) ;
STOCKS IS FIELD(CHAR(8)) ;
SALPRICE IS PIELD(NUMERIC(S)) ;
QOH IS PIELD(NUMERIC(5)) ;

POINTER. INVREC = TRAN.STK ;

FOUND. X

If X is a record in a keyed file, then it is accessed through the
value of a POINTER control variable. It may happen that the key value
used to access the record does not match with any reécord. The accessing
would fail. The user may test the value in a control variable called
FOUND.X to find out whether a record with some specific key exists or
not. This informaton may be used to decide whether a new record should
be added into the file or an old record should be updated. The control
variable POUND.X has the same shape as array X and POINTER.X. Its data
type is boolean.

LEN.X

If X is a field in some record and its data type is variable length
character string, then the actual 1length of X is specified by the
control variable LEN.X which is used to disassemble the input or output
records. Corresponding to every element of array X, there is an element
in LEN.X. The values in the array LEN.X are integers. We can use any
integer type expression to define LEN.X. The only restriction is that
the content of LEN.X should not depend upon any data physically
positioned in a record after the data field X.

NEXT.X

If X is a field in an input sequential file, the control variable
NEXT.X can be used to denote the same field in the next physical record
of the file. Although the next record usually means the record with a
subscript value one larger than the current record, it may not be true
when the current record is the last record in some group. The problem
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is caused by the fact that the user is dealing with structured data but
the real data in the external file is in a linear form. Sometimes the
information used to transform a sequence of records into a structured
form can only be conveniently expressed in the way that the records are
physically contiguous. PFor example, we may want to compare the value of
a key field in two adjacent records to determine whether a record is the
last record in a group or not. The fact that the current record and the
next record may or may not be in the same group causes trouble in
referencing the next record.

Example:

Suppose the records in a transaction file contain a customer number
and some relevant information and the records are sorted according to
the value of the customer number field. We may use the following
specification to describe the data structure.

TRANSACTION IS PILE (CUSTOMER(*)) ;
CUSTOMER IS GROUP (TRANS_REC(*)) ;
TRANS_REC IS RECORD ( CUSTOM_NO, INFORMATION) ;
CUSTOMER_NO IS FIELD (PIC'99999999') ;
I IS SUBSCRIPT ;
J IS SUBSCRIPT ;
END.TRANS_REC(I,J) =
CUSTOMER_NO( I, J )~=NEXT . CUSTOMER_NO(I,J) ;

The term NEXT.CUSTOMER NO(I,J) in the last assertion can not be
replaced by CUSTOMER_NO(I,J+l1) because there may not be a record with
this pair of subscript values. The restriction in using the control
variable NEXT.X is that the position of X field in a record should be
fixed, i.e. the fields to the left of the field X can not be variable
length strings or repeating with a variable number of times. oOtherwise,
the field X in the next record may not be located correctly.

SUBSET. X

If X is a record in an output file, then the control variable
SUBSET.X can be used to selectively omit some records from an output
file. The SUBSET.X control variable is a Dboolean array of the same
shape as the array X+~ When an element in the SUBSET.X has a value of
boolean true, the corresponding record X will be put into the output
file. Oon the other hand, if the element has a value of boolean false,
the corresponding record will not be put into the output file. It
should be noted that the use of SUBSET control variable does not affect
any other computations. Only a subset of records X may be omitted from
the output file.
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CHAPTER 3

SYNTAX ANALYSIS PROGRAM

The first phase of the MODEL processor analyzes the syntax and
other local semantics of individual statements. Advanced
state-of-the—art syntax analysis techniques are used here which have
proved to be invaluable. Specifically, the capability to generate the
parser automatically has enabled rapid development changes. In addition
to checking the MODEL statements for syntactic and some semantic errors,
this phase also stores the statements in an intexrnal associative form
for later processing.

3.1 EBNF, SAPG, AND THE SAP
3.1.1 SPECIFICATION OF MODEL USING EBNF AND THE SAPG

The syntax Analysis Program (SAP) for the MODEL statements is
generated automatically by a Syntax Analysis Program Generatox (SAPG).
As shown in Pigure 3.1, the SAPG produces the Syntax Analysis Program
(SAP) for analyzing MODEL statements, based on a specification of the
MODEL language expressed in the EBNF/WSC (extended Backus Normal Form
With Subroutine Calls) meta language.
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Figure 3.1 Block Diagram of SAPG and SAP

The EBNF/WSC includes the traditional concepts of BNF. BNF uses
sequences of <characters enclosed in angle-brackets « > called
non—-terminals to give names to grammatical units, for which
substitutions may be made. It also uses sequences of characters not
enclosed in brackets which are in the object language (in this case
MODEL). BNF consists of a series of production rules or gsubstitution
rules of the form "A::»B" where "A" is a single non-terminal symbol and
"B" is one or wmwore alternative sequences of terminal or non-terminal
symbols that can be substituted for A. The alternatives are separated
by the meta-symbol "|". To facilitate language description, BNF was
extended to EBNF with two more well-known meta-symbols: €1
representing optionality and { ]* representing zero or more repetitions.

The specification of MODEL that is input to the SAPG congists not
only of the syntax specification of MODEL, but also of subroutine names
embedded within the EBNF; therefore the name "EBNF With Subroutine
Calls” (EBNF/WSC). The SAPG provides a capability to branch to these
subroutines upon successful recognition of a syntactic unit. Thus, they
can complete the SAP to enable it to check some of the statement
semantics, to encode, to produce error messages, and to store the MODEL
statements for later retrieval. The invocations of these subroutines
themselves are written manually. The definition of the MODEL language
in EBNF/WSC appears in Figure 3.2. The subroutines to be invoked are
indicated between glaches (/.../). Note that subroutine calls are made
after the successful recognition of syntactic units up to that point.
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The SAP generated by the SAPG according to the EBNF/WSC is
supplemented and 1linked with the routines. The SAP accepts statements
in MODEL and checks them for syntactic correctness, and local semantics.
It produces a listing of the statements, syntax diagnostics, an encoded
stored version of the MODEL statements, syntax trees for the assertions
and a cross-reference report.
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<MODEL_SPECIPFICATION> : : ={ <MODEL,_BODY_STMI'S> /CLRERRF/ ])*
‘ /STMI_PFL/ <MODEL_SPECIFICATION>

<MODEL_BODY_STMIS>::= /E(80)/

MODULE <MODULE_NAME_STMT>

| SOURCE <SOURCE_PILES_STMT>

| TARGET <«TARGET_FILES_STMT>

| @ _END @ /ENDINP/

| <DCL_DESCRIPTION>

| <BLOCK_BEGIN>

| « END>

{ <«OLD_PFILE_STMI>

| /ASSINIT/ <ASSERTIONS> /STRHS/
«DCL_DESCRIPTION> ::= 1 /INTDCL/ /INTMVAR/ /MEMINIT/ /SVMEM/

<DATA_SPEC>

£, /E(108)/ <INTEGER> /CRDCL/

/INTMVAR/ /MEMINIT/ /SVMEM/

<DATA_SPEC> ]* /STDCL/ <ENDCHAR>
<DATA_SPEC> t1:= «<DCL_MVAR> [( <OCCSPEC> )] [ <IS> ]}
<ATTR_SPEC> /SVDCL/
<ATTR_SPEC> 13= <PILE> /SVFP/ /SVFLNM/ <«FILE_DESC>
<STORAGE_DESC> /STDEV/
| <RECORD> /SVR/
| <PIELD_STMT> /STDFLD/ /SVD/
| [ <GROUP>] /SVG/
<BLOCK_BEGIN> ::= BLOCK /BLKINIT/ ( <NAME> /SVLBL/ ] /E(2)/
: [ <BLOCK_SPEC> ]* /SVBLOK/ <ENDCHAR>
<BLOCK_SPEC> ::= <¢SOLUTION> | <ITERATION> | <REL_ERROR>
<SOLUTION> s1= [ SOLUTION ] METHOD [ <IS> ] /E(62)/
<METHODS> /SVMETH/ ( , ]
<METHODS > 1= NEWITON | GAUSS_SEIDEL | G_S | JACOBI
<ITERATION> 11= [ <MAXIMUM> ] <ITER> ([ <IS> ] /E(4)/
<NUMBER> /SVITER/ [ , ]
<MAXTMUM> 11= MAX | MAXIMUM
<ITER> 11= ITER | ITERATION | ITERATIONS
<REL_ERROR> t1= [ RELATIVE ] <ERROR> [ <IS> } /E(5)/
<NUMBER> /SVERR/ ([ , ]
<ERROR> 1s= ERR | ERROR
<BLOCK_END> ::= <¢END> /BLKEND/ { <NAME> /CHKLBL/ ] <ENDCHAR>
<END> 1 1= /ENDID/
<ASSERTIONS> : :=/E( 14 )/ <CONDITIONAL> |
/SVASSR/ /INTMVAR/ <MVAR> /STMVAR/ /SVCMPl/

[ <IS>/SVNXOP/ ] <DDL_OR_RHS>

<CONDITIONAL>: :=IF /SVAASl/ /SVOPl/ /SETBIT/ /E(18)/
<BOOLEAN_EXPRESSION> /SVCMPl/ /E(38)/
THEN /SVNXOP/ <SIMPLE_ASSERTION> /SVNXCMP/
(ELSE /SVNXOP/ <ASSERTION> /SVNXCMP/] /STALL/

<ASSERTION>::= /E(14)/ <CONDITIONAL> | <SIMPLE_ASSERTION>

Pigure 3.2 Definition of MODEL language in EBNF/WSC
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<DDL_OR_RHS)> ; :=/INTODDL/ <DATA_DESC_STMT> /FREETMP/
| /JB(33)/ <INTOAS> <ASSERTION_BRANCH>
<ENDCHAR>
<ASSERTION_BRANCH> : 1= <¢DEF_EXPRESSION>
{ <BOOLEAN_EXPRESSION>/SVNXCMP/ /STALL/
«<DEP_EXPRESSION>::= /INTSUB/ { <VALUE_LIST> } /FREESUB/
<VALUE_LIST»>::= ( /CRSUB/ /DECPP/ <«VALUE_LIST>
(, <VALUE_LIST> )* ) /INCPP/
| [<SIGN> /SVOPP/] <«NUMBER> /STNUM/ /STASS/
<INTOAS)> ; 1 =/INTOASS/
<SIMPLE_ASSERTION>::= /SVASAEl/ /INTMVAR/ <MVAR> /STMVAR/
/SVCMPl/ /E(23)/ = /SVNXOR/
<BOOLEAN_EXPRESSION> /SVNXCMP/ /STALL/
<ENDCHAR>
<SUB_VARIABLE>: := /SETSUBV/ <VAR> /SVCMPl/
((/SVNXOP/ /SETBIT/ /E(22)/
<BOOLEAN_EXPRESSION> /SVNXCMP/ [ ,/SVNXOP/
<BOOLEAN_EXPRESSION>/SVNXCMP/ ]*
/E(24)/ ) ) /STALL/
<BOOLEAN_EXPRESSION>::= /E(82)/ /SVBEXP/ <COND_EXP>
| <BOOLEAN_TERM> /SVCMPl/
[ <OR> /SVNXOP/ <BOOLEAN_TERM>
/SVNXCMP/ ] * /STALL/
<COND_EXP>::= IF /SVCOND/ /E(3)/ <BOOLEAN_EXPRESSION>
/SVCMP1l/ /E(79)/ THEN /SVNXOP/
<BOOLEAN_EXPRESSION> /SVNXCMP/ /E(12)/ ELSE
/SVNXOP/ <BOOLEAN_EXPRESSION> /SVNXCMP/
/STALL/
<OR>::= /OR_REC/
<BOOLEAN_TERM>: := /E(83)/ /SVBT1l/ <BOOLEAN_FACTOR> /SVCMPl/
(_/SVNXOP/ <BOOLEAN_FACTOR> /SVNXCMP/]*
/STALL/
<BOOLEAN_FACTOR>: := /E(82)/ /SVBFl/ <CONCATENATION> /SVCMP1l/
( <RELATION> /SVNXOP/ <CONCATENATION>
/SVNXCMP/]* /STALL/
<RELATION>; := /RELREC/
<CONCATENATION>: := /E(84)/ /SVCON/ <ARITH_EXP> /SVCMPl/
[ <CONCAT> /SVNXOP/ <ARITH_EXP>
/SVNXCMP/]* /STALL/
<CONCAT> : 1= /CATREC/
<ARITH_EXP>::= /E(81)/ /SVAE/ (<SIGN> /SVOPl/]
<TERM> /SVCMPl/ ([ <OPS> /SVNXOP/ <TERM>
/SVNXCMP/ ]* /STALL/
<TERM>::= /E(87)/ /SVIERM/ <«FACTOR> /SVCMPl/
{ <MOPS> /SVNXOP/ <FACTOR> /SVNXCMP/]* /STALL/
<FACTOR> ;s 1= /E(85)/ /SVFAC/ [ /SVOPl/] <«PRIMARY> /SVCMPl/
( <EXPON> /SVNXOP/ <PRIMARY> /SVNXCMP/]* /STALL/
<EXPON> : 1= /EXPREC/

Pigure 3.2 Definition of MODEL language in EBNF/WSC
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<PRIMARY>::= /E(86)/ /SVPRIM/ <IS_PRIM> /SVCMPl/ /STALL/
<IS_PRIM>::= ( <«BOOLEAN_EXPRESSION> /E(24)/ )
| <NUMBER> /STNUM/ | <STRING_FORM>
| <PUNCTION_CALL> | <SUB_VARIABLE>
<STRING_PFPORM>::= ' /SETSTRN/ [ <STRING> /SVSTRNG/]) /E(26)/
* /ADLEX/ [B /STBIT/ /E(1)/ <B_SUFX>]
/STNUW/
<PFUNCTION_CALL>: := <PUNCTION_NAME> /STFUN/
/SETPUNC/ ([(/SVNXOP/ <BOOLEAN_EXPRESSION>
/SVNXCMP/ (,/SVNXOP/ <BOOLEAN_EXPRESSION>
/SVNXCMP/ ]* ) ] /STALLY
<PUNCTION_NAME>: ;= /PNCHECK/
<MVAR>::= ( <«SUB_VARIABLE> /SVMVAR/
(, <SUB_VARIABLE> /SVMVAR/ ]* )
| <SUB_VARIABLE> /SVMVAR/
<VAR>: := /SETVAR/ /INITQNM/ /E(68)/ <NAME> /ADLEX/ /MKQNM/
(. /ADLEX/ /E(68)/ <NAME> /ADLEX/ /MKQNM/]*
/STR_CON/
<DCL_MVAR> ::= ( <«VAR> /SVMVAR/ ([, <VAR> /SVMVAR/ ]* )
| <VAR> /SVMVAR/
<B_SUPX>::= /BITSTR/
<QNAME> : 1= /INITQNM/ /E(68)/ <NAME> /MKQNM/
[ . /E(68)/ <NAME> /MKQNM/ ] *
<STRING> : : = <S'I'RING_CONST>
<OPS>::= JOPREC/
<MOPS>: 1= /MOPREC/
<TEST>::= /TESTBIT/
<MODULE_NAME_STMT>::= /E(63)/: /E(64)/ <«NAME> /STMOD/
<ENDCHAR>
<SOURCE_FILES_STMT> : t= [ <FILE_KEYWORD>] /E(75)/ /INITSFL/ :
<SOURCE_FILELIST> /STSRC/ <ENDCHAR>
<PILE_XKEYWORD>::= PILES|PILE
<SOURCE_FILELIST>:1:= /E(76)/ <«NAME»> /SVSRC/
(. /E(76)/ <NAME> /SVSRC/]*
<TARGET_PILES_STMT>::= [<FILE_KEYWORD>] /E(77)/ /INITTPFL/ :
<TARGET_FILELIST> /STTAR/ <ENDCHAR>
<TARGET_FILELIST>::= /E(78)/ <NAME> /SVTAR/
(. /E(78)/ <NAME> /SVTAR/ ]*
<DATA_DESC_STMT> : := <«DATA_DESCRIPTION> <ENDCHAR>
<DATA_DESCRIPTION> : : =
<PILE_STMT> /STFILE/
| <RECORD_STMT> /STREC/
| <GROUP_STMT> /STGRP/
| <PIELD_STMT> /STFLD/
| <SUB_STMT> /STSUBST/
<SUB_STMT> : : =¢SUBSCRIPT>/MEMINIT/ /SVMEM/ [( <OCCSPEC> )]
<SUBSCRIPT>::= SUB | SUBSCRIPT | SUBSCRIPTS
<FPILE>::= FILE | REPORT | PFILES | REPORTS

Figure 3.2 Definition of MODEL language in EBNF/WSC ﬂ
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<RECORD_STMT»> : :1= <¢RECORD> /MEMINIT/ {(] <ITEM_LIST> ()]
<RECORD> 1:= REC | RECORD | RECORDS
<ITEM_LIST>::= /E(52)/<ITEM> ([,] <ITEM>]*
<ITEM>: 1= <NAME> /SVMEM / [ . <NAME> /SVMEN/ ]*
(( <OCCSPEC> ))
<OCCSPEC>::= <«STAR> /SVSTAR/ | <MINOCC>/SVMNOC/ [ <MAXOCC>)
¢ <STAR> ; 1= /STARREC/
E <MINOCC> ; 1 =< INTEGER>
; <MAXOCC> :131= [1/E(51)/]<INTEGER> /SVMXOC/ /CXMNMX/
. | <INTEGER> /SVMXOC/ /CXMNMX/
- <GROUP_STMT> : := <GROUP>/MEMINIT/ ((] <ITEM_LIST> ()]
! <GROUP>

——
.ot

.Y
4 remm Bemandm - .
.

tit= GRP | GROUP | GROUPS
<PIELD_STMT'>::= <PFIELD> /SVFLD/ <«PIELD_ATTR>
- <PIEILD> ::= PLD | PIELD | PIELDS
b <FIELD_ATTR>::= [(] <TYPE> /SVPDTP2/( <LENG_SPEC>]
- €,] (<LINE_SPEC>] (,] (<«COL_SPEC>] [)]
<LENG_SPEC> ::= ( /E(48)/ <MIN_LENGTH> ( <MAX_LENGTH> )
/E(49)/ )
| <MIN_LENGTH> ( <MAX_LENGTH> ]
<MIN_LENGTH>: := <INTEGER> /SVMNFLN/
<LINE_SPEC>::= LINE /E(53)/ /E(54)/ /E(55)/
( <INTEGER> /SVLINE/)
<«COL_SPEC>::= COL /E(90)/ /E(91)/ /E(92)/
( <INTEGER> /SVCOL/ )
<TYPE>::= /E(47)/ <PIC_DESC> | <«STRING_SPEC> | <NUM_SPEC>
<PIC_DESC>::= <«PIC_TYPE> /E(67)/ /SVPIC/
' [ <STRING> /SVPICST/ ] ' /STPIC/
<PIC_TYPE>::= PIC | PICTURE
© <STRING_SPEC> ; := «STRING_TYPE> /SVSTRTP/
; 5 <STRING_TYPE>: := CHAR | CHARACTER | BIT | NUM | NUMERIC
<NUM_SPEC>: := <«<NUM_TYPE> /SVYNUMTP/ ( <«FIXFLT»> /SVMOD/ ]
i <NUM_TYPE>::= BIN | BINARY | DEC | DECIMAL
‘ <FIXFLT>::= FIX | FIXED | FL | FLOAT | FLT
<MAX_LENGTH>::= [:] <INTEGER> /SVMXFLN/
} , /E(46)/ <SINTGR> /SVSCALE/
| <INTEGER> /SVMXFIN/
<SINTGR>::= — /E(50)/ <INTEGER> /NEGATE/ | <INTEGER>
<NUMBER> ::= /SETNUM/ <INITNUM> /E(65)/ <RECNUM>
<RECNUM> : := /RECNUM/
<INITNUM>: ;= /INITNUM/
<SIGN>1:= 4 | -
<RECG>::= <¢RECORD> | <«GROUP>
<KEY> ;: : =KEY | SEQUENCE
<CODE> s : =EBCDIC|BCD|{ASCII
<ANY>; 1= <NAME> | < INTEGER>
<NO_TRKS>::= 7|9
<DENSITY>::= 200[556800|1600}6250
<PARITY>: := ODD|EVEN

Figure 3.2 Definition of MODEL language in EBNF/WSC
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<TYPEDSK>::= 2314|2311}13330|2305 | 3330-1
<ORG> : 1 =ORG | ORGANIZATION
<ORG_TYPE> : := /E(7)/1ISAM|SEQUENTIAL|SAM| INDEXED_SEQUENTIAL
<ENDCHAR> ; := /E(74)/ <END_CHAR> /STMTINC/
<END_CHAR> : 1= /SVENDC/
<STRING_CONST> : : =/CHARSTR/
<NAME> : : =/NAMEREC/
<INTEGER> : : =/ INTREC/
<IS>i:~ IS | = | ARE
<PILE_STMT>::= <«FILE> /SVFLNM/ /MEMINIT/ <SON_DESC>
<FILE_DESC> <STORAGE_DESC> /STDEV/
<SON_DESC>::=( <ITEM_LIST> )
| <RECG> [NAME] (<IS>] ([(] <ITEM> ()]
<«OLD_FILE_STMT>::= (PILE> (NAME] (<IS>] /E(56)/ /MEMINIT/
/ INTMVAR/
<DCL_MVAR> /SVPLNM/
<RECG> (NAME] (<IS>] ((] <ITEM> ()]
<PILE_DESC> /STFILE/
<STORAGE_DESC> /STDEV/ <ENDCHAR>
<PILE_DESC>::= [ STORAGE [NAME] (<IS>] /E(44)/ <«NAME>
/SVSTNM/ ]
{<KEY> (NAME) [<IS>) /E(45)/ <NAME> /SVKEY/)
(<ORG> [<IS>] <«ORG_TYPE> /SVORG3/)
<STORAGE_DESC> ::= [DEVICE [«<IS>] <DEVICE»>] /SVDEV/
{RECORD /E(57)/]1{FORMAT (<IS>] <REC_PMT>]/SVRECF/
<BLK_REC_VOL>
{ <TAPE_DESC>] [ <«DISK_DESC>]
(HARDWARE] (SOPTWARE]
<DEVICE> :1:= /E(61)/ TAPE | DISK/SETDEVB/
| CARD /SETDEVC/ | PRINTER /SETDEVP/
| PUNCH /SETDEVU/ | TERMINAL /SETDEVT/
<REC_PMT> ::= /E(69)/ PIXED|VARIABLE|VAR_SPANNED|UNDEFINED
<BLK_REC_VOL> 3=
{ (MAX] /E(70)/ /E(71)/ BLOCKSIZE [<IS>)
<INTEGER> /SVBIX/ ]
{ (MAX/E(59)/] RECORDSIZE [<IS>]) /E(72)/
<INTEGER>/SVRCSZ/ ]
{ VOLUME (NAME] [<IS>] /E(60)/ <«NAME>
/SVVOL/ [,/E(60)/<NAME>]* ]
<TAPE_DESC> ::= [¢TRACKS»> [<IS>] /E(66)/<NO_TRKS>/SVIRK2/ ]
(PARITY (<IS>) /E(66)/ <PARITY>/SVPARZ2/)
(DENSITY (<IS»] /E(66)/ <DENSITY> /SVDEN2/]
( (TAPE] LABEL (<IS>] <LABEL_TYPE)/SVLAB2/]
(START (FPILE] (<IS»>] /E(66)/ <INTEGER>
/SVSTPL2/)
([CHAR) CODE (<IS>] <CODE> /SVCC/ ]
<TRACKS> ::= NO_TRKS | TRACKS
<LABEL_TYPE> ::1= /E(58)/ IBM_STD|ANSI_STD|NONE|BYPASS

Pigure 3.2 Definition of MODEL language in EBNF/WSC
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<DISK_DESC> ::= (UNIT [<IS>] /E(9)/ <TYPEDSK> /SVUNIT2/])
{ <CYLINDERS>/SVUCYL/ (<IS>] /E(66)/

<INTEGER> /SVQTY2/]
<CYLINDERS> ::= NO_CYLS | CYLINDERS

<HARDWARE> ;: ;= [ ([COMPUTER] MODEL [<IS>] <ANY>
<SOPTWARE> ;: 1= [[OPERATING] SYSTEM [<IS>] <ANY>]

Pigure 3.2 Definition of MODEL language in EBNF/WSC

3.1.2 HOW THE SAPG PRODUCES THE SAP

The SAPG is a parser generator. It accepts a specification in the
language EBNF/WSC and produces a parser program (SAP). It performs this
in three passes over the set of productions.

In pass 1, each production is 8Scanned, and its components arxe
encoded into a set of tables. Non—terminal symbols appearing on the
left-hand-side of a production (new production names) are put into a
symbol table (LHS-NT-SYM-TAB), while non-terminals appearing on the
right-hand-side of a production are put into another symbol table
( RHS-NT-SYM—TAB). Terminal symbols in a production are put into a
terminal symbol table (TERM-SYM-TAB). Subroutine calls are put into yet
another table (SUB-TAB).

In pass 2, the symbolic references in RHS-NT-SYM-TAB (i.e.
non-terminals on the right-hand-side of the original production) are
resolved. Pass 2 checks that each non-terminal symbol in RHS-NT-SYM-TAB
is defined, and links it to the corresponding entry in LHS-NT-SYM-TAB.
Undefined non-terminals as well as circularly-defined non-terminals can
be detected in these table searches.

Pass 3 of the SAPG is the code-generation phase that produces the

SAP in PL/I. It is only entered if no errors were encountered in the
previous phases. For each EBNF/WSC production, a PL/I procedure is
generated. Each one returns a bit: 1l if the recognition was

successful; O if it was unsuccessful. The exclusive nature of EBNF
production rules and alternatives is effected by generating nested PL/I
IP-THEN-ELSE statements. Repetition zero or more times is effected by
generating a GO TO to the statement testing for recognition. Subroutine
names embedded in the EBNF/WSC get a CALL generated for them in place.
Calls to other subroutines not explicit in the EBNF/WSC are also
generated. These include "housekeeping” subroutines of the SAP and
calls to LEX, a subroutine to scan and return the next token in the
object language.

To illustrate the code that the SAPG generates, consider the
following representative production rule in the EBNF/WSC and the PL/I
code that corresponds:

<PIELD_STMT>::= «FIELD> /SVFLD/ <FIELD_ATTR> /STFLD/

The PL/I code that is generated for it by the third pass of the SAPG
would be the following:




P R SERY STEE PR O S P vy

PIELD_STMT: PROCEDURE RETURKNS(BIT(1l));

CALL SMARK;

IF PIELD() THEN DO;

IF ERRORSW THEN DO; CALL S$SUCCES; RETURN('l1°'B); END; ELSE;
CALL SVFLD;

IP PIELD_ATTR( ) THEN DO;

IP ERRORSW THEN DO; CALL $SUCCES; RETURN( '1°'B); END; ELSE;
CALL STFLD;

CALL SSUCCES; RETURN('1°'B);

END; ELSE DO; CALL $SUCCES; RETURN('1°'B); END;

END; ELSE DO; CALL SFAIL; RETURN('O'B); END;

END FIELD_STMT;

The above code generated by the SAPG would become one procedure in
the SAP. Note that the name that the language definer uses in the
production rule are preserved in the generated SAP code. The
subroutines beginning with dollar signs (3) are *"housekeeping” routines
that are internal to the mechanisms of SAPG-generated code.

3.2 SUPPORTING SUBROUTINES FOR EBNF OF MODEL

A refined system flowchart of the SAPG and SAP showing the types of
supporting routines appears in Figure 3.3,
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Pig. 3.3 More Detailed View Of SAPG and SAP With
Supporting Subroutines

The manually-written syntactical supporting routines are of one of
several types:

(1) a lexical analyzer which returns tokens of syntactic unitas to
the SAP for analysis;
(2) statement semantics checking routines;
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(3) error message handling routines;

(4) encoding routines to compact information for further efficient
processing; and

(5) statement storage routines.

The cross—-reference report produced during this phase is generated
by a manually-written program (XREP) and is described in section 3.4,

A discussion on how to decide where to insert subroutines as well
as a tabular summary of all routines used appears in section 3.2.

3.2.1 THE LEXICAL ANALYZER

The purpose of the lexical analyzer is to scan for syntactic units
or "tokens”, using such delimiters as blanks and certain punctuation
marks, and to return tokens to the Syntax Analysis Program (SAP) for
syntactic checking. The automatically—generated SAP c¢alls upon the
lexical analyzer (LEX) whenever it needs the next token. The lexical
analyzer is based on the finite state machine concept. Each state of
the machine corresponds to a condition in the lexical processing of a
character string. At each state, a character is read, an action is
taken based on the character read (such as concatenating the current
character to previous ones or returning the entire token to the SAP),
and the machine changes to a new state. The character classes for the
MODEL language, for the purposes of lexical analysis, appear in Table
3.1. These classes divide the entire character set into categories such
as illegal characters, delimiters, "normal” characters, ... etc. The
state transition matrix for the MODEL language appears in Table 3.2.
The rows of the matrix represent the character classes of the previous
character, while the columns represent those of the current character.
The entries in the matrix indicate the action to be taken and the next
state, The action taken in each state is summarized in Table 3.3, The
actions involve such steps as concatenating of a character, ignoring a
character, detecting an illegal character, returning a complete token to
the SAP, ... etc., and setting a "next gtate".
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Table 3.1 Character Classes for MODEL Language |

- Class Character Set Explanation
0 AB...YZ _ _%¢e Characters in names
b 1 space Delimiter
- 2 012 ...9 Numerals
E.} 3 A+ )1 820" Delimeters
H 4 4
[ ; 5 < Delimeter in logical exp
P 6 ! “OR" symbol
Do 7 * Multi. or comment in "/**
= 8 “NOT” sywbol
' 9 - minus symbol
' 10 / Division or comment
) 11 > Delimeter in logical exp
' 12 = Delimeter and logical exp
P 13 all others Illeqgal

|
3
i_
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1111

012345678690123

Character

Class (next)

(current)

13151111111117
l2121222222227
22222222222227
2212222222222"7
22222222222217
222222112222227
22222221222227
22222122222117
22222222222127

~
o~
o~
~N
o~
o~
o~
~N
o~
~N
o~
)
o~
-

OrMNMELHONOON

22222226222227

=]
-

22222222222217
22222222222227

-
lal

N
-

7277777777777 177

(3]
-y

Table 3.2 State Transition Matrix for MODEL Lexical Analyzer
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Action 1: Concatenate next character to current token
Action 2: End word with next character

Action 3: Skips blanks sequence

Action 4: Reserved (not used)

Action S: Scan forward one character and save as token
Action 6: Comment bracket; Scan to end of comment
Action 7: Illegal character(s); print error message

TETR L ) RESTRTRRTR R T L T g T e
- e e W
.

Table 3.3 Lexical Analysis Actions

3.2.2 STATEMENT SEMANTICS ANALYSIS

A T LRI

Some of the semantics of the specification statements can be
checked during the syntax analysis phase. Such routines can check that
a range or condition on a syntactic unit is 1locally correct. These
routines do not and cannot check the overall consistency, completeness,
or correctness of the logic of the MODEL specification, a task which is
pexformed by a later phase of the Processor. An example of a local
semantics checking routine is one which checks the range of a numeric
e | computation, For instance, if a group of data is said to occur n to m
times, a subroutine exists to check the condition 0 <= n ¢ m <32768.
These manually-written routines are invoked automatically by the SAP by
virtue of their specification in the EBNF/WSC of the MODEL language for
the SAPG. The semantic checking routines are listed in Table 3.4.

b it AEEE 2

"} Semantics Cheching Routines

NAME WHAT IT DOES
l ASSINIT Initializes number of sources/targets to
S assertion
2 CATREC Recognize the operator '||’ ‘

BITSTR Check that an alleged bit string contains 1
only the digits 0 and 1

CKMNMX Checks proper range for mininum and maximum

EXPREC Recognizes the operator '=»x° !

FNCHECK Check that a candidate name is a recognized i
function name ‘,

INITONM Initializes number components to qualified i
name

INITSPL Initializes source file list

INITTFL Initializes target file list

INTOASS Returns 1 if the current scanned statement
is an assertion and not a data description
statement

INTODDL Records that the statement scanned is a data
description statement

INTREC Recognizes integer

MEMINIT Initializes number of members of record or
group

Table 3.4 Semantics Checking Routines




Semantics cheching Routines

NAME WHAT IT DOES
MKQNM Concatenates qualified name components
MOPREC Recognizes a multiplication operation, i.e.
'®%' o ° /o
NAMEREC Name recognizer; checks not keywords
OPREC Recognizer for the operators '+', '-°*
OR_REC Recognizes the alternation operation ‘')’
RECNUM Recognizes and scans a number
RELREC Recognizes any of the relations:
€, 2, =, (=, =, =
SETBIT Used to set and reset a bit that indicate

vhether the statement is an assertion or a
data description statement

STARREC Recognizes a '*' for indefinite repetition

SVASSR Saves the actual assertion itself during
the scanning of a statement

SVENDC Recognizes a ';' as an end of statement
character

Table 3.4 Semantics Checking Routines

3.2.3 ERROR MESSAGE STACKING ROUTINE

There is a subroutine which stacks error diagnostics to print out
upon recognition of a syntactically-incorrect user statement. Upon
reaching incorrect syntactic units, the automatically generated SAP does
not print its own messages, but expects the corresponding diagnostics to
be on an "error stack”. Specifically, an error code has to be stacked
for each expected terminal symbol in the MODEL language in case the
token is missing or incorrect. If the expected token is found, the SAP
simply pops the corresponding error code and continues; if the expected
token is missing or incorrect, the SAP pops the corresponding error
code, prints the statement number, the unexpected token, and the
corresponding error message, 8cans for the end of the statement
delimiter (;), and continues. The routine that stacks such error codes’
is called "E". Each syntax error message pinpoints the token that is
incorrect, missing, unexpected, or misspelled.

One product of the syntax analysis phase is the Error Diagnostics
Report containing the error messages. Each mesage gives the diagnostics
corresponding to the error code and provides the exact location of the
error so that it can be corrected and resubmitted by the user easily.
If no syntax errors are found during the syntax analysis phase, a
message is sent that "NO ERROR OR WARNINGS DETECTED", and the Processor
proceeds to the next phase. But if error diagnostics were produced, a
flag is set to disable continuation of analysis and design beyond the
syntax checking phase.

The error messages are listed in Table 3.5.
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ERROR MESSAGES

CODE ERRORS
1 A bit string contains character other than 0 or 1
2 Missing ':®' after the word BLOCK
3 Badly formed boolean expresion after IF in statement
4 Missing or invalid numeric constant in iterative
count spec
5 Migsing or invalid numeric constant in relative
erroxr spec
7 Organization type missing or illegal in DISK
statement
9 Type disk missing or illegal in DISK statement
12 Missing ELSE in comditional expression
14 Asgertion missing after the keyword THEN
18 No boolean expression after the keyword IF
22 no expression after the keyword '(°
23 Keyword '=' is missing
24 Missing right parenthsis
26 Missing string after quote
33 Exrror in recognition of a right hand side of an
asgertion
38 Keyword THEN is missing
39 Record or group keyword expected
42 Record name missing or illegal in FILE or REPORT
statement
Table 3.5 ERROR MESSAGES
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oopE
44
45
46

47

48
49

50
51
52
53
54
S5
56
57

s8
59
60
61
62

ERRORS

Medium name missing or illegal in PILE or REPORT
Keyname missing in PILE or REPORT statement
Maximum length migsing or illegal in variable length
in PIELD statement

Invalid or missing field type in field/interim
statement

Missing or invalid length in field/interim statement
Missing right parenthesis after field-type in
field/interim

‘~' gign is not succeded by an integer
Missing/invalid max no. of occurrences of items.
Name migsing or illegal in item list

Missing left parenthesis in line spec

Missing integer in line spec

Missing right parenthesis in line spec
Missing/invalid file name after keyword FILE
PORMAT missing/misspelled after RECORD in storage
statement

Missing/invalid tape label

Keyword RECORDSIZE missing/misspelled after MAX
Missing/invalid volume name (external or internal)
Missing/invalid device type

Missing/invalid iterative solution method

Table 3.5 ERROR MESSAGES
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ERROR MESSAGES
CoDE

ERRORS
63 Colon wmissing after keyword MODULE
64 Name missing or illegal in MODULE statement
(3.3 Exror in assewbly of a number constant
66 Tape spec. parameter missing or illegal
67 Error in a picture spec )
68 Qualified name illegal
69 Record format missing or illegal
70 Keyword BLOCKSIZE wmissing in record format spec
71 Blocksize value missing/illegal in record format
spec
72 Record size value missing/illegal in record format
o spec
A 74 Missing ';' at end of statement
1_ ; 75 Missing ':' after keyword SOURCE PILES
- 76 Name missing/illegal in source file list
4 , 17 ':* missing after keyword TARGET
F T 78 Name missing/illegal in TARGET file list
3 j 79 Missing THEN in conditional expression
Co 80 Unrecognizable statement
& 81 Badly formed arithmatic expression
“ 1 82 Badly formed boolean expression
e 83 Badl formed boolean term
E 84 Badly formed concatenation of expressions
-

Table 3.5 ERROR MESSAGES
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ERROR MESSAGES
CODE

ERRORS

8s Badly formed factor

86 Badly formed primary

87 Badly formed term

920 Missing left parenthesis in column spec

9l Missing integer in column spec

92 Missing right parenthesis in column spec

101 Length of picture spc. is too small or too big

102 Specified length is inappropriate for specified type
of data

104 Specified maximum length is inappropriate or too
small

105 The fraction point offset is outside of bounds
-128¢p<¢127

106 Bad repetition specification

107 Illegal character in picture specification

108 Expecting a level number in a structured data

description statement

Table 3.5 ERROR MESSAGES

3.2.4 ENCODING USER STATEMENTS

These supporting routines encode some of the MODEL specification
into an internal representation. Although all of the names provided by
the user specification are kept intact in internal form for use by the
object program, many of the descriptions and attributes are encoded for
more compact and efficient processing later. For example, the
description in a PIELD statement enters an internal table where the type
of field is encoded (O for character, 1 for binary, 2 for numeric,
etc.), and the field length type is encoded (0 for fixed length, 1 for
variable length). One encoding routine is written for each statement
type. Each routine is invoked automatically after recognition of the
syntactic unit by the SAP. The invocation is automatically generated as
part of the SAP by the SAPG by virtue of its specification in the
EBNF/WSC. The internal format of the tables is given in the next
section in conjunction with the discussion of the internal associative
storage of the MODEL statements,

The encoding and saving routines are listed in Table 3.6.
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Table 3.6 ENCODING/SAVING ROUTINES

ENCODING/SAVING ROULINES

NAME

INITNUM
SETDEVB
SETDEVC
SETDEVP

SETDEVT

WHAT IT DOES

Initialize scanning a numeric constant

Set device flag in media description to
imply disk storage

Set device flag in media description to
imply that input is from cards

Set device flag in media description to
imply PRINTER

Set device flag in media description to
imply a texminal

Set device flag in media description to
imply a card punch

Initiate a node in the syntax tree to store
a function reference

Set for assembling a constant number
Initiate a node in the syntax tree to store
a string constant

Initiate a node in the syntax tree to store
a subscripted variable

Initiate a node in the syntax tree to store
a variable name

Stores a node in the syntax tree after all
its components have been defined
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ENCODING/SAVING
NAME

STBIT

SVASAEl

SVEF1
SVBLK
SVBT1

Table 3.6 ENCODING/SAVING ROUTINES
ROUTINES
WHAT IT DOES
Sets the current string contained in the
temporary node to be a bit string
Store device; Tape or Disk
Stores a node in the syntax trxee which
contains a function name
Concludes the assembly of a constant number
Concludes the storing of a picture type
specification
Stores a node in the syntax tree which
contains a general constant
Stores an assertion in the associative
memory (an entry point in ASSINIT)
Sets a node to contain a conditional
asgertion
Sets to define a node containing a simple
assertion
Sets a node for storing a boolean expression
Sets a node for storing a boolean factor
Saves block size in disk/tape storage entry
Sets a node for storing a boolean term
Encodes character code
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ENCODING/SAVING
NAME

sVorl

Table 3.6 ENCODING/SAVING ROUTINES
ROUTINES
WHAT IT DOES
Save in a node the recently scanned
syntactical unit as the first descendant
Saves column number in field storage entry
Sets a node for storing a concatenation of
expressions
Sets a node for storing a conditional exp.
Saves density for tape
Set device name to storage name, and save
device: Tape or Disk
Sets a node for storing a factor
Encodes field type, including NUM and DEC
Encodes field statement type as FLD
Save file name. Call SVPILE, set default
namegs for record storage, and reset device
bit (DEVBIT)
Saves key field in file storage entry
Encodes label type in tape statement
O=none, 1=IBM_STD, 2=ANSI_STD, 3=BYPASS
Save label for tape
Saves line number in field storage entry
Saves member name in record/group storage
entry




S
’!
' )
1
i
i

Table 3.6 ENCODING/SAVING ROUTINES

ENCODING/SAVING ROUTINES

NAME
SVMNFLN
SVMNOC

SVMOD

SVMXFLN

SVMXOC
SVNUMTP
SVNXCMP

SVNXOP

SVoPl

SVORG3
SVPAR2
SVPIC
SVPRIM
SVPICST
SVQTY2

WHAT IT DOES

Saves minimum field length in PLD statement
Saves minimum rumber of occurrences in
record or group storage entry

Marks the mode as PIXED or PLOATING

Saves maximum field length in FLD statement
Saves maximum number of occurrences in
record or group storage entrxy

Marks the data type as a numeric data type
( BINARY or DECIMAL)

Saves the next assembled syntactical unit
in a syntax node which is its ancestor
Saves the next delimiter associatel with
the assembled syntactical unit or
separating it from its successor

Saves an initial delimiter associated with
phrase such as unary '-' or ‘'IP’

Saves organization for disk

Saves parity for tape

Denote the data as 'PICTURE’

Sets for assembling a phrase for a PRIMARY
Saves the picture specification string
Saves quantity for disk
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Table 3.6 ENCODING/SAVING ROUTINES
ENCODING/SAVING ROUTINES

NAME WHAT IT DOES

SVRCSZ Saves record size in tape/disk storage enrty

SVRECF Encodes record format on tape/disk storage;
O=FIXED, 1=FIXED BLOCK, 2=VARIABLE

SVSCALE Saves the scale factor specified in the
precision gpecification of the data type

SVSRC Saves source file name in source storage
entry

SVSTAR Records and saves the repetition spec. '(*)°*
in a file statement

SVSTFL2 Save start file# for tape

SVSTNM Saves storage name in FPILE storage entry

SVSTRNG Transfer an assembled string constant from

the general buffer into a special temporary
storage. The final sorage of the node will
be done by STR_CON.

SVTAR Saves target file name in target storage
entry

SVTERM Initializes a node to store a phrase for a
TERM

SVTRK2 Saves number of Tracks for tape

SVUCYL Save units as CYL for disk

SVVOL Saves volume name in disk/tape storage entry

3.2.5 STATEMENT STORAGE ROUTINES

These routines collect the strings of names and other wvital
information in the MODEL statements, and pass them to the STORE system,
which is a subsystem in itself to store the statements for later
processing. Such storage-invoking routines are called at the end of
scanning each MODEL statement, and are the ones <that begin with the
letters ”"ST" (e.g. STFLD, STREC, etc). The storage subsystem described
below (STORE), which is called Dby these routines, stores the MODEL
statements in a simulated associative memory that facilitates later
retrieval.

Oon analyzing the assertions (computational statements) a syntax or
derivation tree which represents the assertion is generated and stored. }
This representation facilitates later analysis and scanning of the 1
aagertion, as well as systematic transformation. The tree
representation is reconverted into text form in the code generation
phase.

At the end of the syntax phase, we have the entire set of MODEL -
statements stored in a convenient storage system for further analysis. 3
The storing subroutines which invoke the use of the STORE system act as
an interface between the automatically generated SAP and the storage
system presented below. The storage system is an extension to the H
capabilities of the SAPG since it is general purpose in nature and is
independent of the nature of the language specified, and could Dbe used
for processing other languages.




The storing routines are listed in Table 3.7.
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Table 3.7 STORING ROUTINES
SIORING ROUTINES
NAME

WHAT IT DOES

STPILE Stores FILE statement

STFLD Stores FIELD statement

STGRP Stores GROUP statement

STMOD Stores MODULE statement
STPNCH Stores PUNCH statement

STREC Stores RECORD statement
STSRC Stores SOURCE PILES statement
STTAR Storea TARGET FILES statement

3.2.6 HOUSEXEEPING ROUTINES

Finally, there are a few "housekeeping™ type subroutines which need
not be written by the language definer because they are provided by the

SAPG, but which need to be included in the EBNF/WSC.

The housekeeping routines are listed in Table 3.8
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Table 3.8 HOUSEKEEPING ROUTINES

HOUSEKEEPING ROUTINES

NAME WHAT IT DOES

ADLEX Adds a subpart of a floating point constant
to its full representation

CLRERRF Clears errors flag every statement to
indicate no syntax errors yet in next
statement

ENDINP Executed upon end-of-file to print last line
and wrap-up

FREETMP Prees allocation of a temporary data
structure which was needlessly allocated

NEGATE Negates the value of a negative integer
constant to derive its real representation

STMT_PL Scans for end of statement delimiters when
unrecognizable statement encountered

STMTINC Increments the statement number; called at

end of each statement

3.2,7 AN INDEX TO SAP ROUTINES

The subroutine names used in the specification of MODEL can be
classified into one of the following four types of subroutines:
encoding/saving routines, storing routines, semantics checking routines,
and housekeeping routines. Table 3.6, 3.7, and 3.8 provide an
alphabetical listing of the routines within each category. As for error
messages, the error code and their meanings are shown in Table 3.5.

3.3 THE STRING STORAGE AND RETRIEVAL SUBSYSTEM
3.3.1 INTRODUCTION

The store routines that are referred to in the EBNF description of
MODEL, utilize a general-purpose mechanism for storing source language
strings. A similar mechanism is used later for retrieving these source
lanqguage strings. The following system, Dbasically, consists of a
directory structure, described in section 3.3.2 and the format of
storage entries described in Section 3.3.3. There are also two main
procedures:

(1) STORE for storing source language string collected during syntax

analysis. STORE is described in Section 3.3.4.

(2) RETRIEVE for accessing previously stored source language strings,
based on a variety of "keys”. RETRIEVE is described in Section

3.3.5,.

Additionally a set of routines specified in EBNF parses and stores
the assertions. Section 3.3.6 describes the format of stored
assertions. Section 3.3.7 describes the routines that store the parsed
assertions. Theseé routines have also been referred to in the
description of saving and encoding routines in Section 3.2.4.
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The STORE procedure accepts strings which are formed by the
subroutines called during syntas analysis. It stores the strings in
memory which we call “"storage entries” while building "directory
entries” in a directory of certain names designated as keys. By
building a directory, the strings are stored "associatively” in the
sense that statements can later be retrieved based on their content.
This capability is crucial to "non-procedural” language processor 8ince
the statements can be input in any order.

3.3.2 THE DIRECTORY AND STORAGE STRUCTURE

The storage entries (the strings to be stored) consist of two
parts:
(1) the key names to be entered in the directory which include the names
the wuser provided in the MODEL statements for naming data, assertions,
etc. these are the names by which we may want to retrieve information
later.
(2) auxiliary data from the source language strings including the
encoded information in table form. This information is not used as the
basis of retrievals.

Each storage entry will contain information from a given MODEL
statement. They will appear in memory in the order in which they are
processed,

The directory consists of an entxry for each key name. Each
directory entry points to the first storage entry containing that key
name. A linked-list is then maintained from the first storage entry
with that key name to other storage entries containing the same key
name. A binary tree structure was chosen for the directory to make tree
modifications and key names searches efficient. It is the first key
name entered in the directory which becomes the root of the directory
tree; the next key is entered "above" or "below"” it in the tree by
lexicographic ordex; etc.

Each directory entry has the following form:

{ Key name | Ptr—-to-first | Up-pointer | Down-pointer |

vhere “Keyname” is a string of (up to) 10 characters (padded with blanks
to its right side)

rptr—to—first” is a pointer to the first storage entry containing the
"key name”.

*up-pointex" and "Down—pointer" are pointers to other directory entries,
whose Xkey names are up or dAdown, respectively, in the lexicographic
sense.

Each storage entry has the following form:
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| N) name-1 ) ptr-1 | . . . | Name-n | Ptr-n | ptr-to-—data|

where N is the number of key names in the storage entry string. }
Name (i=1 to n) is a key name of a variable.

Ptx (i=1 to n) is a pointer to the next storage entry with the same key !
name. !
Ptr-to—data is a pointer to auxiliary data from the source language )
statement.

Figure 3.4 depicts an example of three storage entries and a
directory consisting of only three entries, X, ¥, and Z, where Y is the
root of the directory tree. Such a structure was partially motivated by
similar ideas in the "Multi~list" file organization.




Directory

Storzge
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- |
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Pig. 3.4 Sample Directory and Storage Enties I
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3.3.3 STORAGE ENTRIES PORMAT FOR MODEL STATEMENTS

The STORE mechanism, described in the next section, is called Dy
SAP's storing subroutines to store the MODEL statements for retrieval
(by RETRIEVE) in the later phases. For each type of MWODEL statement,
the key names in it arxe stored in its storage entry. The non—-key
information in the MODEL statement (information which is not used to
specify retrievals) is kept in description tables, which are connected
(by STORE) to the corresponding storage entries as was shown above.
Table 3.9 summarizes the internal format of the storage entries and the
corresponding description tables for each type of MODEL statement. The
leftmost name in each entry is the name of the statement being stored.
The middle column shows the information appearing in the corresponding
storage entry (with the pointers omitted due to lack of space). The
right column shows the additional encoded information, if any, from the
statement. The key names beginning with a dollar sign ($) in the
storage entries are not user-proveded, but are inserted by the system
for its own information. The last name in each storage entry, for
example, identifies the type of statement.




()]

MOOULE: module-name module-name
SOURCZ PILES: 31, .zl"".ﬂ SSOUI‘IC! (1}
TARGET FILESs t1, %20 s00 t- $TARGET t)

STORAGE IS e,
YEY 13 X, ORG IS 0)

group~-name IS GROUP

$onLe
82 o0 By

2 e “

CROUP W
filename 1S P“‘l‘r‘:rm)‘. rmfllﬂ\l.‘ r s k& $PILE

record-name 1S RECORD record-nams g By coo Wy
(.l' Iz....,l’\) ‘Pf‘l. ‘RECD

Mageese TOUp-naas Iy
(R1omzee e %) sbrile gotp 2Tt

Table 3.9 Storage entries Format for MODEL

erietions
%ML
srce
TAR?
FILE ORG-Code Key-flag 1e-star’

9ECD

GRP

0- SAM 0 no sort 0-no ceper.
1- 1SAM L hyu for r
~80rt keY j.y repeats
facnbers memders P
#subscripts
first sud,
second cubd,

(ssme as record)




Table 3.9 Storage entries Format for MODEL
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3.3.4 ''ME STORE PROCEDURE

The STORE(S,D) Procedure has two parameters, S and D. S is the .
string containing the key names which are to be stored and to be entered
in the directory. D is a pointer to previously built auxiliary data
from the source string. The latter usually is an encoded form of
non-key source language information.

Algorithm STORE shows the storing procedure. STORE receives the
key names from S and creates a storage entry for it (Steps 1-3). It
checks if they are in the directory (Steps 4-5, subroutine SEARCH DIR).
If the key is in the directory, then it follows the "pointer—to— first”
. th points to the first storage entry with that name (Steps 7-8). The
array of strings in that storage entry is scanned until the key name is
found. If its "nest” pointer is null (end—of-list), then it is set +to
point to the newly created storage entry (Steps 8-11). If it is not,
the process is repeated until a null (end—-of-list) pointer is found
(Steps 9-10). If the current key name is not found in the directory, it
is entered in the appropriate spot in the 1lexicographical position in
the directory (Step 6, subroutine CREATE DIR) and the pointer in the
directory is set to point to the newly created first storage entry
(Steps 7-8).




Alpgorithm STOPRT : The Store Procedure

Paraneters: S=string of keys to bYe stored;
N=pointer to other data

(sce Section 2.3.2 for diagrams of Data Structaves)
[Subroutincs called: CHECK_DIR, CEMEPATE_ENTRY]
Step 1. Count #KCYS.

Step 2. Allocate the storage entry for S (call it SE, according to the
format showm).

Step 3. Connect PTP_TO_DATA in SE to D.
Step 4. For each key name, perform steps 5 through ll.

Step 5. If key exists in the directory (Algorithn CHECK-DIP ), then go
to step 7; else go to step 6.

Step 6. Crcate a directory entry for this key. (Algorithr CENEPATE-
ENTRY )

Step 7. Let Dhe=this dircctory encry.

Step 8. If IPTR_TO_FIFST in DU already points to a first storape eatry
vith this kcy name, then go to step 9; elsc no to step ll.

Step 9. Get the next sterage entry in the list.

Step 10. If 41t 4s the last {a list, then go tn step l1l; eclsc go to
step 2.

Step 11, Add cthe ncv SF to the list.

Step 12, Peturn.
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3.3.5 THE RETRIEVE PROCEDURE

RETRIEVE(E,D,S,N,P) is the procedure for retrieving desired storage
entries, by searching through the data structures depicted in Pigure 3.4
and Table 3.4. It is invoked by many routines described in subsequent
phases of the Processor. It has five input parameters as indicated.
RETRIEVE finds all the storage entries in which the given key name or
expression of key names, E, appears and furthermore checks whether the
first characters of data associated with the storage entries match <the
string D. That is, RETRIEVE finds all the storage entries with keys
satisfying the logical expression E and other data D. RETRIEVE starts
its search at directory entry S, normally the root node of the
directory, and it returns a list of pointers P, to those storage entries
which satisfy the request of the calling program. The number of storage
entries satisfying the request is returned in N.

The logical expression used to retrieve strings can be any boolean
expresgion involving "key" names or names in the MODEL statements in
disjunctive normal form, where the first key in each term is
non-negated. PFor example, consider the following statement by a calling

program:

CALL RETRIEVE(KEYS, '’, START, N, P);
KEYS might contain the string value 'PRICE &
“QUANTITY |EXTENT ‘. This makes RETRIEVE find all storage entries

(which correspond to all statements in the MODEL specification) in which
PRICE appears and QUANTITY does not appear, or statements in which
EXTENT appears. The null second parameter means that the auxiliary data
portion of each statement is immaterial. RETRIEVE would then start its
search and return a list of pointers in P to those storage entries which
satisfy the condition, and N would be set to the number of statements
that satisfy the condition.

Algorithm RETRIEVE is shown in the following page.
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Algorithm RCTRIRVE : The Retri.ove Procedure

Paranetetrs: L=logical expression strinp; S=pointer
to beginning of directory (input);

P=list of pointers satisfying F; N=nunber of
satisfyins entries

(see Figure 7a for diagrams of data
structures)

Step 1. Get leading Ley name ¥ of next conjunct from E. If

no noce, ro to Step 22,

Step 2. Check directory for K (standard binary tree search

in subroutine SFARCH-DIP given earlier).

Step 3. 1f found, then go to step 4; else so to step l.

Step 4. Set PSE=PTR_TO_FIRST (notinter to first storage entcry

wvith K) '

Step S. Add TSFE to U 1list (temporary list of pointers)

Step 6. If K in PST storapme entry points to another storage

encry vith ', then o to step 7; else go to step 8.

Step 7. Set PSE to next storage entry in the lisc, go to
Step S.

Step 8. If end of E, then go to step 20; elsec go to step 9.

Step 9. Cet next svnhel {n F.

Step 10, 1f syobol=‘S’ then go to step l4; else o to step

1. .

Step ll. If synbol="|]

return.

Step 12. Add !ist of polnters in U to list of pointers in P

wichout duplicacion.

Step 13, Co to step 1.

Sten 14, Cet next symbol.

Step 15. If symbol=’"° then po to step 15; clse go to step

18.

Step 16, (Case of conjoining nerated cterm) eliminace

pointers in !'! to storage entries which also contain next kev

name in L.

Step 17. Co to step 8.

Step 1R, (Case of conjoining non-nepated term) eliminate

pointers in U to storage entries which do not contain next

key name in F.

Step 19. Co to step 8.

Step 20. Add list of pointers in W to list of pointers in P,

Step 21. Sct 'enumber of pointers in P lisc.

Step 22, Teturn.

L4

then o to step 12; elsc error
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An example showing the retrieval mechanism to retrieve all storage
entries with key names "B" and "C" is given in Pigure 3.5.
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Pig. 3.5 Example of Retrieval Mechanism
The diagram shows in parentheses the steps that correspond in the
algorithm. RETRIEVE starts by getting the leading key name of the first
conjunct (Step 1) and searches the directoxy for it (Step 2). If found,
it puts the list of pointers to all storage entries with that name in a
temporary list (Step 3-7). If there are other names in the conjunct
(Steps 10, 14), then RETRIEVE eliminates from the temporary list those
pointers whose storage entries do not have the other names in the
conjunct (Steps 14-16). If there are more conjuncts in the expression,
then the process is repeated and additional pointers are added to the




list (Steps 12-13). When the end of the expression is reached, the list
of pointers to the satisfying storage entries and the number of pointers
are returned (Steps 20-22).

3.3.6 STORAGE STRUCTURES FOR ASSERTION STATEMENTS

Analysis of an assertion statement causes two storage entries to be
made for the satatement. (See also Table 3.9). The first entry has the
type ASTX and contains in its main part just the assertion label (system
generated) and a keyword SASSERT., Its auxiliary data contains a pointer
to the syntax tree which represents in a parsed form the body of the
assertion. The second entry has the type ASTG and contains a list of
all the names which are sources and targets to the assertion. Sources
are all the names which appear on the right hand side of each equal
sign, (including subscript expressions) and within boolean condition
expressions. Targets are the names whose values are defined by the
assertion.

3.3.6.1 THE SYNTAX TREE FOR AN ASSERTION

The syntax tree of an assertion is constructed out of mutually
linked nodes. There are nodes of two types: non—terminal nodes which
have descendants and terminal nodes which have no descendants and
represent atomic syntactical units such as identifiers, numeric and
string constants. Each node corresponds to a phrase in the parsed
assertion, and if it is non-terminal the 1list of its descendants
represents the further breakup of this phrase.

3.3.6.2 THE STRUCTURE OF NON-TERMINAL NODES

The structure of non—-terminal nodes is as follows:

I | n= | | Pointer| | | Pointer|
| TYPE| Number | Delimit| to Sonl| ... | Delimit| to Son |
| !

of Sons| #1 ! #1 ! | #n | #n |

wvhere "TYPE" is an integer code identifying the syntactical type of the
phrase according to the following legend:
o - Conditional Assertion. Example: if A=B THEN C=D
1 - Simple Assertion. Example: A=B
2 - Conditional Expression.
Example: IF A > B THEN C ELSE O
— Boolean Expressions. Example: (A=B) | (C=D)
— Boolean Term. Example: (A > 5) & (C <= 3)
Boolean Pactor. Example: C = 7
- Concatenation. Example: All || °‘END’
- Arithmetical Expression. Example: (A*B)+(C*D)

oeNoOWnm
|
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Term. Example: A*B

11 Pactor. Example: Ar*2

12 Primary. Example: A, B(I+1), (A+B)

13 - Function. Example: SUM(A,I)

14 - Subscripted Variable. Example: A(FOR_EACH.A)
*Number of Sons" is the number of components or subphrases that the
indicated phrase is broken into. Thus if the phrase is "A+B" it is of
type 9 (Arithmetical Expression) and it is parsed further into the
subphrases “"A" and "“B". The '+' delimiter will be stored as delimiter
number 2 in the current node.

The delimiters are encoded as integers according to the following
legend:
1 - ' '(Blank - No delimiter)
‘IP' (keyword)
- 'THEN'
- 'ELSE’
- '+l

- *»' (Standing for multiplication)
- '/u

- 'w»x' (Exponentiation)

- ']' (Alternation - Logical ‘'or')

o
POVONOAMSWN
{

12 - LN ]

13 - '||*' (Concatenation)
14 - '*' (Negation)
15 - !('

16 - l)'

17 - 'Ilv

18 - *'>°'

19 = ' =

20 - ‘¢’

21 - '¢='

22 - '8'

23 - >

24 - ‘¢’

"Delimiter 1, i=1, ..n" are the delimiters separating the subphrases.
The first one is the delimiter prefixing the whole phrase such as the
*~* in the phrase —A or the ' ' in the phrase ' (A«<B & B«C)'. "Pointer
to Son i, i=1,..n" are pointers to other nodes which represent the
subphrases into which the current phrase is parsed.

3,3.6.3 THE STRUCTURE OF TERMINAL NODES

Terminal nodes are used to store constants such as variable names,
string or numeric constants. Their structure is as follows:

| type | str-length | value |

where "type" is an integer code identifying the ¢type of the constant

-
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according to the following legend:

20 ~ character string constant. Example: 'ABC’

21 ~ function name. Example: SUM

22 - numeric constant. Example: 3.14

23 ~ variable name. Example: PAY

24 - bit string constant. Example: °‘1001°'B
"Str-length” is the length of the character string representing the
constant. It will be 3 for storing the variable name °'PAY'. "Value” is
the actual chic-acter string representing the constant.

During later processing (Module ENEXDP), all the tsrminal nodes
which refer to non—-constants (types 21,23) are converted to a different
format; referred to as variable—terminal-nodes:

| Type | Node# |

'Type' as before is an integer code identifying the type of the name
according to the following legend:

25 - Variable type. The associated name is a variable and NODE_ is
the dictionary entry number of this variable.

26 — Subscript type. This stores the name of a subscript. NODE#
refers to a dictionary entry numbexr. This dictionary entry can
be of one of the following types:

‘GRP', 'RECD', or 'PLD', which must be repeating. If this entry
name is X then the name of the subscript is FOR_EACH.X.

'SSUB" - This is a global subscript declared by the user.

'$*' — This is a free subscript added by the system. It is one
of the subscripts $1.,to$9.

27 - Punction Name. NODE# is an index in a 1list of functions
recognized by the system. See Table 3.10 for the list.

An overall example consider the syntax tree for the assertion:
If A=B | C<D & Ec=P
THEN X(PFPOR_EACH.X) = (Y+Z)*T|| *'S$';
ELSE X(POR_EACH.X) = '0';
It is described in Pig. 3.6, with the modification that delimiters are
represented Dby themselves rather then in their encoded form, to improve
readability.
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Pig. 3.6 Syntax Tree For Example — Assertion
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3.3.7 THE SYNTAX TREE CONSTRUCTION ROUTINES

Several routines are responsible for the construction of the syntax
tree of an assertion. They way be classified and described as follows:
Setup Routines: On entering a parse for a phrase of a certain type (dy
SAP) an appropriate setup routine is called. This routine allocates a
temporary node area (temporary since we do not know yet how many
subphrases or <components it will have), assigns a type number
corresponding to the type of the phrase and resets a component count to
0.

There ias a setup routine corresponding to each phrase's type. They are
for the non-terminal types (listed in increasing type code order):

SVAASO. SVASSR (SVASAEl), SVBEXP, SVBT1l, SAVPl,

SVCON, SVAE, SVTERM, SVFAC, SVPRIM, SETPUNC, SETSUBV.

For the terxrminal types (codes > 19), a string area is allocated and
a type variable is assigned, too. No setup routine exists for bit
string since the distinction between it and a character string can be
made only at the end of its scanning.
Save Routines: These are coomon to all non—-terminal phrases. They
alternately store delimiters and pointers to components, increasing the
“number of sons™ counter appropriately. These are all stored in the
temporary node storage area.
SVOP1 —~ Stores a first delimiter. If this routine is not called the
first delimiter is always set to 1 (= ' '),
SVCMPl - Stores a pointer to the first component.
SCNXOP ~ Stores the recently scanned delimiter in the next available
delimiter slot. Then increment the "number of sons™ counter.
SVNXCMP - Stores a pointer to the recently assembled subphrase in the
next available component slot.
Storing Routines: These finalize the node structure, after scanning of
the phrase is complete. Since size of strings and number of sons are
known by this time, a permanent node space is allocated and the contents
of the temporary storage entry transferred there. The temporary storage
area is then freed.

STALL - This is the storing routine for all the non—-terminal nodes.
It first checks to see if the assembled node is not trivial. It will bhe
trivial if it contains only one component and the first delimiter is
blank. In this case no permanent storage is made for this node. This
check eliminates redundant nodes in the syntax tree. If the node is not
trivial, a permanent allocation is made for it and the proper contents
transferred there,.
For the terminal nodes we have separate storing routines:
STNUM ~ Stores a numeric constant
STPUN - Stores a function name
SVSTRNG — Transfers a string constant to the storage area before calling
on STR CON.
STBIT — Stores a bit string
STR_CON - A common routine for storing all constants. It allocates a
permanent node storage and transfers type, length and string
into it.
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CHAPTER 4

PRECEDENCE ANALYSIS

4.1 INTRODUCTION

A MODEL specification congists of many data description or
asgertion statements. In principle, the data description statements
specify the structure of data entities such as file, group, record, and
field. The assertions specify the relationships between the data
entities. The data entities and the assertions are referred to here as
program entities. On the other hand, in an executable program there are
program events such as I/O activities, computations, or getting data
ready. The events in a program generated by the MODEL system correspond
to entities in the specification. PFor example, a file entity
corresponds to an event of opening a file or closing a file; a record
entity corresponds to reading a record or writing a record; and an
asgertion entity corresponds to computing a target variable. The
sequence of the program events is not given by the user. Instead, it is
determined by the MODEL processor under the constraints of precedence
relationships among the program events. In this chapter we discusi the
analysis for vrecognizing the precedence relationships between program
events and representing them in a directed graph.

Based on the specification we can find the unique symbolic names
assigned by the user to data entities. Additionally the MODEL processor
automatically assigns a unique name to every assertion. Similar to
other compilers, the MODEL processor maintains a symbol table called
dictionary which contains all the symbolic names of program entities and
their attributes.

The dictionary is created by a procedure CRDICT which finds all the
entities in the program specification and stores their names into the
dictionary. Except for some special cases described below, there is a
correspondence between each statement in the specification and an entity
in the dictionary.

Attributes of a symbol such as the type (file, group, field, ...,
etc), the number of dimensions, the structural relation of it to other
symbols are stored in the dictionary during the process of precedence
analysis, and later during dimension analysis. This information is used
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}t, later to determine the execution sequence.

- Various types of relationships among program entities have direct
! ', implication on the execution sequence of their corresponding program
y | events. The pPrecedence relationships among the program events are found
E based on the analysis of the program entities. Por example, a

hierarchjcal relationship exists when one data entity contains another,
such as vwhan a file contains a record, a record contains a field, ...,

etc. A dependency relationship exists between a field and an assertion
when the field is either a source variable of the assertion or its
target variable. Therxe are also relationships between data entities and
! their associated control variables. The events and their precedence
relations are represented by a directed graph called an Array Graph.

8 The Array Graph is created by two procedures, ENHRREL and ENEXDP.
3 The ENHRREL routine analyzes data description statements and finds the
precedence relations caused by the hierarchical relations between data
[? entities. The ENEXDP routine analyzes assertions and finds the
. precedence relations from the dependency relations among data fields and
; assertions. It also finds the precedence relations among data entities
5 and their associated control variables. Since the Array Graph contains
the complete precedence information, it is wused to check the
completeness and consistency of the specification and to determine the
computation sequence.

b 4.2 REPRESENTATION OF PRECEDENCE RELATIONSHIPS
4.2.1 DICTIONARY

Every program entity has a full name which uniquely identifies it.
Most of the entities have a single component full name. When two data
- entities share the same name, it is necessary to qualify the name with
their respective file names to distinguish them. Two data entities
within one file are not allowed to share the same name. A file name may
have at most +two instances denoted as NEW or OLD followed by an
identifier. Thus a data entity may have a full name of three
components: NEW or OLD, file name, and data name. Control variables
have one component more than the associated data entities, i.e., a
regsexrved key name. The full name and the attributes of each program
entity are stored in the AQictionary.

In order to use memory efficiently, memory space for the entries of
the dictionary are allocated dynamically. Pointers to the dictionary
entries are stored in a vector DICTPTR and the total number of pointers
in the wvector is denoted as DICTIND. With this arrangement, we can
allocate memory piecewise and access the information randomly. Since
each program aentity corresponds to a node in the Arxrray Graph, we will
call its entry number in the dictionary node number. The organization
of the dictionary is shown in PFig. 4.1 and the attributes in the
dictionary are listed in Table 4.1.




node# DICTPTR

1 [ TR

2 —ATR . . . |ATTRu(2

N —NAmw [ - JAamen ]
DICTIND

Pig. 4.1 Orxrganization of the dictionary




Table 4.1 Attributes in the Dictionary

XDICT - Is the full name of the entity.

XNAMESIZE - Is the number of characters in XDICT field,

XUNIQUE — Is the smallest name by which the entity can be identified
uniquely. If the file name component of a full name is not
necessary to identify the entity uniquely, then XUNIQUE is set
to the name without file name component; otherwise, XUNIQUE is
set to XDICT.

XDICTYPE — Specifies the type of the entity. Pollowing are the possible
values:

ASTX - An assertion.

GRP - A group.

PILE A file.

RECD - A record.

MODL - The specification name.

SPCN - A special name prefixed with a keyword such as END, SIZE,

LEN, POINTER, NEXT, SUBSET, ENDPILE, and FOUND.

User or system declared subscripts, including the

standard subscripts: SUBl, SUB2, ..., SUBlO.
$$ - System added subscripts: $1, $2, ..., $10.
$SI - System loop variables: SI1, $I12, ..., S$IlO.

XMAINASS — Contains a pointer to the storage of the statement which
defines the entity.

$SUB
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Table 4.1 Attributes in the Dictionary (Continued)

XNRECS -~ This count is meaningful only for file entities and holds the
number of different record types contained in the file.

XPARFILE - Holds the node number of the parent file entity for all input
and output data items.

XPAREC - Por data items below the record level this field holds the node
number of their parent record entity.

XINP — Is '1'B if the entity is in input file, and '0'B otherwise.

XOUP -~ Is *1'B if the entity is in output file, and '0’B otherwise.

XISAM - Is '1'B if the entity is an ISAM file, and '0O'B otherxwise.

XKEYED - Is '1'B if the data entity is in a file for which a key name
was sgpecified.

XLEN_DAT - The length in bytes of the data entity.

XREPTNG — Is '1'B if the data entity is repeating.

XVARYREP - Is °'1'B if the data entity has a varying number of
repetitions.

XMAX_REP ~ The maximal number of repetitions which was declared foxr the
data entity. If no maximal repetition is declared, XMAX_REP is
set to 1.

XVARS - Is '1'B if the entity contains a descendant below the record
level and the descendant has a variable structure.
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Table 4.1 Attributes in the Dictionary (Continued)

XSUBREC — Is '1'B if the data entity is a member of some record type.

XISSTARRED — Is °‘1'B if the data entity is repeating and has a
undetermined repetition.

XFATHER - The node number of the data entity which is one level abuve
the current entity in the data structure.

XSON1 - The node number of the leftmost descendant of the current
entity.

XBROTHER - The node number of the immediate right neighbor of the
current entity in the data structure.

XENDB - The node number of the control variable END.X if the currnt
entity is X.

XEXISTB — The node number of the control variable SIZE.X if the current
entity is X.

XVIR_DIM — The conceptual (virtual) dimensionality of the entity.

XSUBSLST - A pointer to the node subscript 1list associated with the
entity.

X$SSUCCESSORS - The number of edges in the XSUCC_LIST.

XSUCC_LIST — A pointer to the list of edges emanating from the current
entity.

XSPREDECESSORS — The number of edges in the XPRED_LIST.

XPRED_LIST - A pointer to the list of edges coming into the current
entity,

4.2.2 THE ARRAY GRAPH

The Array Graph is a directed graph which represents the precedence
relationships among program events. The nodes in the Array Graph are
the program events and the edges are the precedence relationships. One
Program event in the Array Graph will correspond to one program entity.
Thus the nodes in the Array Graph correspond to the program entities in
the dictionary. The edges between nodes are stored in edge lists
asgociated with those nodes. The attribute SUCC_LIST of a node contains
a list of edges emanating from it and the attribute PRED_LIST contains a
list of edges terminating at this node. We can thus find the successors
as well as the predecessors of any node.

The nodes in the Array Graph are compound nodes, i.e., an entire
array of data is represented by one node. Also each assertion is
represented by one node, independently of how many array elements it
defines. The range of each dimension of a compound node is stored in
the node subscript list associated with the node. The edges in the
Array Graph are compound edges which denote arrays of relations between
two compound nodes. With each edge are also stored the types of
subscript expressions used in the relations between the source and the
target node of the edge. The meaning of the Array Graph is made more
precise Dby considering the corresponding Underlying Graph (UG), where
every array element is represented by one node. An assertion node in
the Array Graph may be expanded in the UG into as many nodes as the
elements of the array which it defines. Edges axe drawn between the
simple nodes. The UG may be an enormous graph which is impractical to
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analyze. Sometimes the actual number of array elements i# not Xknown
until run time. Thus it is impossible to create the UG of the
specification. In contrast, the Array Graph is more compact and easy to
analyze.

4.2.2.7 DATA STRUCTURE OF EDGES
Every edge from a node S to a node T has a uniform format:

t
™Ul, ..., Uk) ¢<—— S(J1, ...,Jm)

where t is the type of the edge,
k is the dimensionality of node T,
m is the dimensionality of node S,
Ji, l«=i<=m, are subscript expressions appeaxred on
the ith dimension of node S,
Ui, l«=ic=k, are the node subscripts associated with
the node T.

The subscripts Ul, ...,Uk of the target node T are stored in ¢the
attribute XSUBSLST of T in the dictionary. Therefore they are not
specified in the edge. In the later discussion, a ¢type 4 subscript
expression Ji will be indicated by an *'*' in the ith dimension of the
source node. .

An edge is represented by the following data structure:
SOURCE : The source node of the edge.
TARGET : The target node of the edge.
EDGE_TYFE : The type of the edge.
DIMDIF : The difference between the dimensionality of the target
node and the source node.
SUBX : A pointer to the subscript expression list (Jl,...,Jm).

4.2,2,2 DATA STRUCIURE OF SUBSCRIPT EXPRESSION LIST

A subscript expression Ji can be classified into one of the
following seven categories according to its composition (refer to
section 3.3.2). Type 4 subscript expression is referenced later as a
general sgubscript expression. Types 5, 6, and 7 subscript expressions
are added for the efficient implementation of some 1list type
functions{PNPR 80]. They are basically of the form X(I) where X is a
variable but used to subscript another variable B in B(X(I)). This form
of sgubscript expression is referred to as indirect indexing. The array
used in indirect indexing must be integer valued with non-negative
entries. The system will analyze indirect subscripts only if the
indirect indexing array X(I) is sublinear, namely if it is:

a) Monotonic, i.e., if I»J then X(I) >»= X(J).
b) Grows more slowly than I, i.e., X(I) <= I,
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The system can test the indirect indexing array automatically to
determine if it is sublinear by the following simple criteria. In the
asgertion that define the indirect indexing array X(I), the value of the
right hand s8ide must be either O or 1 for I=1 and must be equal to
X(I-1) or X(I-1)+1 for I>l. Thus the system will examine the assertion
to check if it is in the form:

X(I) = IF I=1 THEN (1 | O)
ELSE (X(I-1) | X(I-1)+1) ;

An element in a subscript expression 1list is defined by the
following data structure:

NXT_SUBL : A pointer to the next element of the list.

LOCAL_SUBS : If the subscript expression is of the form Uq[-c] or
X(uq(—<])(—k])., then LOCAL_SUBS is q, i.e. the ordinal number of
the subscript Uq as it appears in T(Uk,...,Ul).

APR_MODE : The type of subscript expression.

INXVEC : The node number of the indirect indexing vector X if the
APR MODE is 5, 6, or 7. Otherwise, 0.

4.3 CREATION OF THE DICTIONARY (CRDICT)

The procedure CRDICT analyzes the statements of the specification
and enters all the program entities into the dictionary. To find all
the data entities we start from the top level of data structures and
then trace down the structures. The structures whose root is a file
listed in the SOURCE FILE or TARGET PFILE statements of the program
header are considered external files, i.e. input file or output file.
If a data structure is not part of any input or output file, it is
considered an interim variable which is computed as any variable in an
output file but not written to the external storage.

Corresponding to each input or output file, there is a file entity
entexred into the dictionary. If a file named F is served both as a
source and a target file, then two file entities named OLD.F and NEW.F
will be entered into the dictionary. Starting from the file entity we
can find its immediate descendants from the file description statement,
and the descendants' names will be prefixed by the file entity's name.
If the root of a data structure is not a file, we will consider INTERIM
as its file name and all the decendants will be put into dictionary,
too.

As we analyze a data structure, we also construct a tree
representation for it. For every data node we gtore pointers to its
father. leftmost son, and younger (i.e. immediate to its right side)
brother in the attributes XFATHER, XSON1l, and XBROTHER reaspectively. We
will illustrate this with an example in Fig. 4.2.
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X IS GROUP (Y,Z) ;
Y IS FIELD

Z IS FIELD

“we

XFATHER(Y)
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"

XFATHER(Z)
XSON1(X)

<
"

XBROTHER(Y)

™~
]

Fig. 4.2 Tree representation of data structure

After all the data entities are entered into the dictionary, a
simplified name is derived for every data entry. If the file name
component can be omitted from the £full name without causing any
ambiguity, the simplified name is the reduced name. Otherwise the
simplified name is the same as the full name,.

Other types of program entities such as module name, assertions,
and subscript variables are defined by a specific type of statement
respectively and there is a one~to-one correspondence bhetween the
statements and the entities. We can retrieve these types of statements
from the associative memory and enter the entities into the dictionary.

Finally we will put control variables into the dictionary. Por
each type of qualifier keyword, we find from the program specification
all the qualified names with that gqualifier. Next we search the
dictionary for the suffix name. If the suffix is a declared data
entity, the full name of the control variable is formed from the £full
name of the associated data entity. Othexwise, the qualified name is an
unrecognizable symbol and is reported as such to the user.

4.4 CREATION OF ARRAY GRAPH
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4.4.1 ENTER HIERARCHICAL RELATIONSHIPS ( ENHRREL )

The data stored in external sequential files are simply a string of
bits. The use of data description statements allows the user to treat
them as structured. Therefore, the system has to transform the data
files from a linear form to the structured form which is described by
the user. Por this purpose, we envisage that there are two program
events corresponding to each data entity, one for opening the data and
the other for closing the data. The sequential order of data in the
external file requires these opening and closing events be arranged in a
strict order. The precedence relationship among these program events
can be established as follows. If a data entity contains some members,
then its opening event precedes the opening event of its first member
and its closing event follows the closing event of its last member. 1In
addition, the closing event of its nth member precedes the opening event
of its n+lth member. In the case that a data entity is repeating, then
the closing event of its n-1th instance precedes the opening event of
its nth instance. Fig. 4.3 shows the precedence relationship of a
sequential file. Because the data node B is repeating, there is an edge
from the n-1th instance of the closing event of node B to the nth
instance of the opening event of node B. The edge is shown as a dashed
line. The existence of this feedback edge causes a cycle in the Array
Graph and this cycle ensures us that the reading of an instance of the
field D will be followed by the reading of an instance of E. It should
be noted that the subscript expression associated with the edge from the
event C.B to the event 0.B is of the form I-1 which allows us to remove
it and break the cycle during the scheduling phase.
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A IS FILE (B(#),c(%)) ;
B IS REGCORD (D,E)
C IS RECORD (F,G) ;
D,E,F,G ARE FIELD ;

* 0.X: opening event for data X

* C.¥: closing event for data X

Fig. 4.3 Precedence relationship of a data structure

We envisage that for each field entity there is a third node which
corresponds to the available event of the data. The opening event of an
input field must precede its available event, and the closing event of
an output field should follow its available event.

This view assures us that we can always rxead the input files
sequentially and store them in the main memory before any computation
starts. If there are variable structures, i.e., structures of varying
field 1length or varying number of repetitions, then we may have to
include some assertions in the reading process. Afterwards we can do
all the computation internally conforming with the constraint of data
dependency which is implied by the assertions. At the end, all the
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fields in <the output files are available and the informations for
controlling the variable structure are available, too. We then take the
data from main memory, assemble them into records, and write the recoxds
sequentially.

Actually we have in the Array Graph only one node, instead of <the
open, cClose, and available nodes mentioned above, for each data entity,
as this helps compiler efficiency. Por input files, we can view the
nodes as corresponding to the opening events. PFor output files, the
nodes corresponding to the closing events. The records stored in a
sequential file have to be accessed in a strict order. Therefore, there
is a precedence relationships among the data entities of an input or
output file to assure that the records are accessed in the proper order.
On the other hand, a record is composed of fields. The membership
relation between a record and its constituent fields implies a
precedence relationship, i.e. no field in an input record will be
available until <the record is read in. Similarly all the fields in an
output record should be available before the record can be written out.

We will use the following definitions in discussing tree
structures.

Definition FPor a data entity G, SON1(G) denotes its leftmost son.
Definition For a data entity G, RSON(G) denotes its rightmost son.

Definition Por a data entity G, CEB(G) denotes the closest elder brother
of G, i.e. the data entity which is to the immediate left of G
among all the brothers of G.

Definition Por a data entity G, CYB(G) denotes its closest younger
brother, i.e. the data entity which is to the immediate right of G
among all the brothers of G.

Definition Por any tree with node G as the root, RDM(G) denotes the
rightmost node on the frontier of the tree.

Definition Por any tree with node G as the root, LDM(G) denotes <the
leftmost node on the frontier of the tree.

The precedence relationships in different file types is discussed
in the following.

1) Input sequential file., Since the records in a sequential file are
read in one at a time, the precedence relationship needs to assure
that the records are read in the order they are present in the input
file. A record may be composed of many fields. Therefore, after a
recoxrd is read, it should be unpacked to get all the fields. If <the
racords in a file are not unpacked in the order they are read, then
we will need memory space to store the records. Therefore, it is
advantageous to unpack the records when they are read in. This
implies that all the fields in a sequential file will become
available in the order they occur in the external file. Three kind
of edges are drawn among the data nodes in an input sequential file.
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a) Assume that a data node G is n dimensional. If SON1(G) exists and
is m dimensional where m may be either n or n+l, then the
following edge is drawn.

SON1(G)(J1,...,Jm) <-la- G(J1,...,Jn)

b) Assume that a data node G is n dimensional and PATHER(G) is Xk
dimensional where Xk may be either n-1 or n depending on whether
node G repeats or not. If CEB(G) exists and RDM(CEB(G)) is m
dimensional, then the following edge is drawn.

G(J1,...,Jn) <~1b— RDM(CEB(G))(J1l,...,Jk,*,...,*)

¢) Assuming that a data node G is n dimensional. If it is repeating,

then the following edge is drawn.

G(Jl,...,J ) “'lc- MG)(J].,...,J -ll*l"'l*)
n n

If a data node in an input sequential file corresponds to the
opening event of that data, we can interpret the above edges in the
following way. The edges of type la say that a higher 1level data
instance should be 1ready before all of the data instances
corresponding to the first member of it can be read. The edges of
type 1b say that all the brothers within the same instance of their
father should be read in the order they are declared in the data
structure. The edges of type 1lc say that if a data node is
repeating, then one instance of it is not ready to be read until the
last field in the previous instance of it is read.

Output sequential file. The records of an output sequential file
should be written out in a strict order. There may be several fields
in a record, therefore, we may have to pack the fields before
writing. Packing the fields when they become available is convenient
for the code generation but poses extra restrictions on scheduling
the assertions. For example, suppose a record node R contains three
fields A, B, and C. If we insist that fields A, B, and C should be
available in that order, the user would not be able to define the
value of A in termsa of C. Therefore, at or above the record level
the precedence relationship requires that the records be written in
strict order but below record level the precedence relationship will
only require that the constituent fields of a record are ready before
the record is written. Therefore, fields in a record do not have to
be computed in the order they are packed into the record.

Three kinds of edges are drawn among the data entities above and
including the record level of an output sequential file.

a) Assuming that G is an n dimensional data entity above the record
level and RSON(G) , 1i.e. the rightmost son of G, is =
dimensional. The following edge is drawn from RSON(G) to G.

G(J1,...,In) <=2a— RSON(G)(J1,...,Jn,*)

b) If node G has a younger brother, then an edge will be drawn from
node G to LDM(CYB(G)). Let G be an n dimensional node, PATHER(G)
be a k dimensional node, and LDM(CYB(G)) be a m dimensional node.
The edge to be drawn is as follows.

LDM(CYB(G))(J1,...,Jk,...,dm) <—2b- G(J1,...,J0K,*)

c) If node G is repeating, then the following edge is drawn from G to
LOM(G). Iet G be an n dimensional node and LDM(G) be a m
dimensional node.
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1':1 ' m(G)(Jl,...,Jn,...JI) ¢=2C—- G(Jl,...,Jn-l)

If we imagine that a data node in an output sequential file
correspondas to the closing event of that data, then the edges
mentioned above have the following interpretation. An edge of type
- 2a says that a data instance can be written out only after all the
> data instances corresponding to its last son are writtem out. An
' edge of type 2b says that all the instances of an elder brother
within the same father instance should be written before any instance
' of its younger brother can be written. An edge of type 2c says that
if a data node is repeating, then an instance of it cannot begin to
be written until the previous instance is completely written.

Baelow the record 1level in an output file, the precedence
relationships assures that a record will not be written out until all
of its constituent fields are available. However, the relative order
in which the fields are computed is not restricted. We will simply
draw edges from all the descendants of a record node to it. PFig. 4.4
illustrate the edges in an output sequential file.

A IS FILE (B(#*),C(™)) ;
8 IS RECORD (D,E) ;

- C 1S RECORD (F,Q) ;
P,E,F,G ARE FIELD ;

PFig. 4.4 The edges in an output sequential file

3) An input ISAM file. In an ISAM file, there is only one type of

- 80 -




;
i
:
X
2
;4
. -
:

record. The dimensionality of the record node IR is the same as that
of the associated control variable POINTER.IR. Since the zrecord
ingtances are accessed with the Xkeys, it is possible to read the
records in the order of the keys. If the ISAM file is a pure source
file to the program, the keys in the POINTER.IR array can be used in
any order. On the other hand, if the ISAM file is used as a source
and target file, the records should be processed in a sequential way,
therefore, the keys in the POINTER array should be used sequentially
to acceas the recoxds. Below the record level, we can have the
similar precedence relationship as in a SAM file because we may have
to unpack the fields.

4) An output ISAM file. 1f an ISAM file is a pure target file, the
output records will be added +to the file. If it is a source and
target file to the program, then only the selected records may be
updated. In order to assure that each updated record includes the
effects of previous updates, we will have to update and write out a
record before the next record is read in. Therefore, the keys in the
POINTER array should be used sequentially. However the fields in an
output record can be computed in any order. Below record level the
precedence relationships only reflect the membership of the fields
within the record./

/

S) Interim variable. There are no I/0O actions concerning interim
variables. They are stored in main memory and referenced as fields.
Therefore, there is no relative precedence relationship among the
interim fields. But we still draw edges which reflect the mewbership
among the data entities to facilitate range propagation (refer to
Chapter 5). Since an interim variable is considered to be part of an
output file except that it will not be written out, the edges are
drawn from the descendants to the ancestors. ’

4.4.2 ENTER DEPENDENCY RELATIONSHIPS (ENEXDP )

Two types of assertions, namely simple assertion and conditional
asgertion, may be used to define the values of interim variables and
output variables. The execution of an assertion depends on the
availability of all of its source variables, and its execution makes the
target variable available. This is Dbecause a data entity wmust be
defined before it is referenced and a data entity becomes available
after the assertion in which it is the target variable is executed.

Procedure ENEXDP examines all the assertions twice. In <the first
pass, it checks whether the target variable of an assertion defines a
sublinear function and can be used as an indirect indexing wvector or

- not. An indirect indexing array should be defined by an assertion of

the following form.
X(I) = IF I=l THEN (O | 1)
ELSE (X(I-1) | X(I-1)+1) ;

During the second pass, it analyzes every assertion and enters the
precedence relations caused by explicit data dependency into the Array
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Graph. Given a simple assertion, the left hand side of it is scanned to
find the target variable. Then the expression on the right hand side is
scanned to find all the source variables. For a conditional assertion,
the THEN parts, ELSE parts, and the conditional expression parts are
scanned in that order to find all the source and the target variables.
The source variables in a conditional assertion are found in the
conditional expressions, the THEN parts, and the ELSE parts. For every
source variable an edge is drawn from it to the assertion node. It
should be noted that one assertion defines one target variable only and
no more than one target variable can appear in a conditional assertion.

The edge from the source variable to the assertion is of EDGE_TYPE
3 and the edge from the assertion to the target variable is of EDGE_TYPE
7. The DIMDIF is the dimensionality difference of the target node and
the source node of the edge. The types of the subscript expressions of
a source variable are stored in the subscript expression list associated
with the edge. It should be noted that the subscript expressions of the
target variable define a mapping from the node subscripts of the target
variable to the node subscripts of the assertion. Because the edge
corresponding to the occurrence of the target variable is drawn from the
asgertion node to the target wvariable, instead of from the target
variable to the assertion node, the mapping should be inverted to form
the subscript expression 1list of the edge. In Fig. 4.5 the data
dependency of an assextion is shown. Notice that there is a 1list of
subscripts associated with every node in the graph. FPFor example,
variable A is a two dimensicnal array. Subscripts <A,1> and «<A,2>
correspond to the first and second dimension of array A. The edge
leading from node A to al has a subscript expression 1list associated
with it. The subscript expressions are ordered in the way they are used
in the subscript variable A(I,J~1).
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al: C(I,J) = A(I,J-1) + B(I,4) ;

A <A’l> <A’2> B <B,1> <B,2>

(1,0-1)  3A1,%

al <al,I> <al,J>

C <C,1> <C,2>

Pig. 4.5 The data dependency of an assertion

In addition to the explicit data dependency found in an assertion,
there exists some implicit data dependency between the data entities and
their associated control variables. Let TRGT denote the name of a data
entity and NODE denote the name of the associated control variable which
is composed of a keyword PREFIX followed by the name of the data entity.

1. If PREPIX = 'POINTER', then verify that TRGT is a keyed record and
draw an edge.
TRGT <~5— POINTER.TRGT, DIMDIF = O .
2, If PREPIX = 'SIZE', then verify that TRGT is repeating and draw an
edge,
TRGT(I) <-13—- SIZE.TRGT, DIMDIF =1 .
3. If PREPIX = 'END', then verify that TRGT is repeating and draw an
edge,
TRGT(I) <-14- END.TRGT(I-1), DIMDIF = O .
4, If PREFIX = 'POUND', then varify that TRGT is a keyed record and
draw an edge,
FOUND.TRGT <-15-~ TRGT, DIMDIF = O ,
5. If PREPIX = 'NEXT', then verify that TRGT is a field in an input
sequential file and draw an edge.
NEXT .TRGT <-16— TRGT, DIMDIF = O .
6. If PREFIX = 'SUBSET', then verify that TRGT is an output record.

If it is an output record, then draw the following edge.

TRGT <-17- SUBSET.TRGT, DIMDIF = O .
7. If PREPIX = 'LEN’, then we draw an edge.
TRGT <=-20— LEN.TRGT, DIMDIF = O ,

.
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The subscript expression lists of these edges are for the moment
empty. They will be constructed by the procedure PILLSUB later
according to the EDGE_TYPE.

4.5 PFINDING IMPLICIT PREDECESSORS (ENIMDP)

Many efforts have been made to make MODEL language tolerate some
incompletenesses and inconsistencies in the specification. When
incompletenesses and inconsistencies are found, warning messages or
error mwessages are sent to the user. If practical, the MODEL processor
tries to correct the specification in a reasonable way.

F
.

If an interim field is not defined by any assertion, an error
message is sent to inform the user. It is probable that the user forgot
to write the assertiocn. Therefore, the system should request an
assertion from the user. However, if a field in a target file is not
defined explicitly, the MODEL processor will try to find an implicit
source to define that field. The MODEL processor tolerates this kind of
) incompleteness and saves the user work of writing assertions for merely
copying fields from a source file to a target file.

B b ek e o

Given a field in a target file which is not explicitly defined by
any assertion, we will search for a field with the same name in another
file according to the following order of priority. The idea is to make
some reasonable assumption so that the undefined field will get a value.
Rule 1: If the undefined field is in a file which is both a source  and

‘target file, then the value in the corresponding field in the
o0ld record is taken as the value for it.

Rule 2: If Rule 1 does not apply, then the processor tries to find a
same—-named field in other source files. If one is found, it is
assumed to be the source. If more than one is found, <then the
processor arbitrarily picks one as the source and prints a
message to indicate that there was ambiguity.

Rule 3: If the above are unsuccessful, the processor tries to find a
field with the same name in other output files. If one is
found, it is taken as the source, and if more than one is found,
then one is taken arbitrarily, with a corresponding message to
the user regarding the ambiguity.

In the above cases where an implicit predecessor is found
successfully, an assertion which defines the target variable by the
implicit predecessor is generated as if it were entered by the user.

4.6 DIMENSION PROPAGATION (DIMPROP)

e e eelia A i aBa L

The source and the target variables in an assertion may be arrays.
In order to reference an element of an N dimensional array, the user
should subscript the array name with N subscript expressions. A
subscriptless dialect of the MODEL language allows the user to omit
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subscripts in assertions in certain cases which do not 1lead ¢o
ampbiguity. Therefore, the number of subscript expressions following an
array variable does not necessarily indicate its actual Adimensionality.
Purthermore, the declaration of a multi-dimensional interim array may be
simplified by omitting the data description statements for the higher
level groups. The omission of subscript expressions in assertions and
the omission of the higher level data description can be viewed as
incompleteness or inconsistency of the specification. However, they are
tolerated by the MODEL processor, and a process called dimension
pPropagation is used to resolve inconsistencies of the dimensionality for
the interim variables and missing subscripts in assertions.

All the nodes in input and output £files should be declared
precisely, using data description statements. Their number of
dimensions can therefore be derived directly from the data description
statements. Asgsociated with every edge there is a field DIMDIF which
denotes the dimension difference between the source and the target nodes
of the edge. The number of dimensions of a node can be propagated along
the edges of the Array Graph.

The dimension propagation algorithm is briefly described in the
following. Let N denote the set of nodes in the Array Graph, array C
store the current number of dimensions, and array D store the initially
declared number of dimensions for each node in N. A queue Q keeps all
the nodes whose calculated dimension could possibly be changed.
Algorithm 4.1 Dimension Propagation
Input. Array Graph.

Output. VIR _DIM: An attribute in the dictionary which contains the

number of dimensions of a node.

For each node n in N, let C(n) be D(n) and put node n in Q.

If Q is empty, then exit.

Pick a node n from Q, remove it from Q. Let dim be O.

For every incoming edge from node s to n, let dim be the maximum of

dim and C(s)+DIMDIP.

S. Por every outgoing edge from node n to t, let dim be the maximum of
dim and C(t)-DIMDIF.

6. If dim«=C(n), go to step 2. '

7. Else, the node n has a new updated dimension. Let C(n) be dim.

8., For every incoming edge from node s to n, append 8 to Q.

9. For every outgoing edge from node n to t, append t to Q.

10. If more than N*N rwxies have been taken from the queue, then halt and
issue an error message -~ there exists a propagation cycle.

S WM

If the process converges, then every node will have a finite
dimension. Bowever, it is possible that a cycle in the graph causes an
endless increase in the dimensions. Consider for example the following
specification.

(P, H) ARE PIELD ;

I IS SUBSCRIPT ;

IF I=1 THEN H(I) = 5 ; ELSE H(I) = P41 ;
IF I=1 THEN P(I) = 6 ; ELSE F(I) = H+l ;




The first assertion implies that the dimension of H is larger by 1
than that of P, i.e. C(H)>C(F). The second assertion states that
C(P)>C(H). Applying our algorithm to this specification will result in
endless loop of alternately incrementing C(H) and C(F). In this case
the system will send out an error message indicating that the dimension
propagation process is in an infinite cycle and also print out the nodes
involved in the cycle.

4.7 FILLING MISSING SUBSCRIPTS IN ASSERTIONS (FILLSUB)

In the dimension propagation phase we have determined the number of
dimensions of every node. If the number of dimensions of a node is
larger than its apparent number of dimensions, it is necessary to add
the respective subscript and data structures. This is performed in the
following three tasks.

Task l1l: Generate the node subscript list.

If the node X is a data node, its node subscript list is (displayed
here from last to first):
(FOR_EACH.Ak, .... , FOR_EACH.Al)
where Ak, ..., Al is the list of the repeating ancestors of X in a top
down order. If X itself is repeating than Al is equal to X.

If the node is an assertion node, then it has already been assigned
a partial subscript 1list Ly ENEXDP. This is the list of apparent
subscripts in the assertion, i.e. all the subscripts appearing either
on the L.H.S. or the R.H.S. of the assertion. Let the assertion be of
the form:

al: A(Tk, ..., I1) = £(....)

Let the R.H.S. contains the subscripts J1, ..., Jm not appearing on the
L.H.S. and hence assumed to be reduced. Then the partial list assigned
to al is (Ikx, ..., I1,0m, ...,J1) and its apparent dimensionality is

determined to be d=k+m. As a result of the dimension propagation
process we may have recomputed a new dimensionality ¢ for al where c>=4d.
This will cause n=c—d new subscripts to be added to the subscript list
of a1 which now appears as:

($n, ..., $1,1x,...I1,9m,....,J1)
where $1, ..., $n are the name of the new subscripts.

Tagsk 2: Fill in Missing Subscripts in the Assertions.

Consider an instance of a subscripted variable A(Ij, ..., I1l) in an
assertion. The calculated dimension VIR DIM for array A yields a value
d which should be greater or equal to j. If n=d-j>0 we should add n new
system generated subscripts $1 to $n, modifying the instance into A(S$n,
coor 81,139, ..., I1). It should be noted that the new subscripts are
always added on the leftmost dimensions of the array variables.

Task 3: Pill in the Subscript Expression List for the Edges.




All the edges except types 3 and 7 have been generated with an
empty subscript expression list. Using the edge type and the dimensions
of its source and target nodes, we generate a subscript expression list
for each edge. Edges of type 3 and 7 have a partial subscript
expression list based on their apparent appearance in the assertion. It
may be necessary to expand this partial list. If n missing subscripts
have been added to the variables in an assertion, then it 1is necessary
to add n subscript expressions to the edges which correspond to the
instances of the variables in the assertion.
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CHAPTER 5

RANGE PROPAGATION

$.1 INTRODUCTION

The structures of variables are declared in data description
statements. Every variable is considered an array of some dimensions.
The number of elements in an array variable is determined by the
dimensionality of the array and the sizes of each of the array
dimensions. The gsize of an array dimension is called the range of that
dimension. The range information allows us to allocate memory space for
the array variables and generate iteration control statements which will
define every element in the arrays. The use of subscripts in assertions
makes it possible to define multiple elements of an array through one
assertion. We can instantiate an assertion by fixing its subscript
values. Then every instance of the assertion defines one 8ingle data
element. The ranges of the assertion's subscripts restrict the number
of instances of an assertion, which in turn defines the number of <times
that the assertion will be executed. The ranges of array dimensions and
assertion subscripts are used in the later phases +to synthesize the

progzram.

Much information is not given explicitly in the specification. For
instance users are allowed in assertions to use free subscripts for
which the range is not specified. Also the range specifications of some
array dimensions may be omitted. Therefore an algorithm is needed to
derive ranges for certain assertion subscripts and array dimensions.

There is yet another reason why we want to analyze the subscript
ranges, A criterion for placing a number of assertions in the scope of
one loop is that they all have subscripts of the same range. Prom the
point of view of program optimization it is preferred to have the loop
scope as large as possible. It is important therefore to identify the
subscripts of the same range. By propagating the specified range
information to all the assertion subscripts and array dimensions we not
only find the ranges which have been incompletely specified, but also
identify the ranges which are equal.




5.2 LANGUAGE CONSTRUCTS FOR RANGE SPECIFPICATION

A multi-dimensional array is declared as a hierarchical data
structure with the most significant dimension specified at the top
level. The range of a dimension may not depend on the subscript value
of less significant dimension. The range of an array dimension may be
specified in MODEL in several alternate ways as follows:

(1) Through a data description statement. A constant number of
repetitions of a data structure may be specified in the data
description statement which describes the parent structure.

(2) By defining the value of a SIZE qualified control variable (Refer to
section 3.4.). Por example, if group X repeats M times and M is a
variable itself, we may use the following assertion to specify its
range:

SIZE.X = M ;

A SIZE qualified variable is an interim variable of at most one
dimension 1less than that of the suffix variable. Its value is used
to define the range of the last dimension of the suffix variable
(i.e. X). Consider an N dimensional repeating group X. Assume
that the ranges of all its dimensions except the 1least significant
one are defined elsewhere. By definition, SIZE.X is at wmost an N-1
dimengsional array and the range of its dimensions is exactly the
same as the range of corresponding dimensions of data structure X.
Since the values in array SIZE.X can be different from one another,
the array X may not have a regular (i.e. rectangular) shape, but
have "jagged edges." This can be stated formally as follows:

XS ,8 ,...,8% ,...,8 ) is in X iff
1 2 k n

Pirtimaresrie. provvet papsens

SIZE.X(S ,...,8 ) is in SIZE.X &
1 k

1 <=8 «= SIZEX(S ,...,8 ) :
n 1 k i

(3) By defining the value of an END qualified control variable. The END
array is of boolean type. It determines the range of the least
significant dimension of the variable named in the suffix. Given an
N dimensional array X, the associated control array END.X has the
same structure as array X. The range of the Nth dimension is
defined as the smallest positive integer Ln which satisfies the
following conditions.

END.X(S ,...,8 ,In) = TRUE &
1 n-1

END.X(S ,...,8 S ) = FALSE,
1 n-1 n

for 1 <=8 <« Ln.
n |
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(4) By using a subscript declaration statement to define a global
subscript. The constant number of repetition can be specified in
the statement. For example:

I IS SUBSCRIPT (20) ;

(5) By system default. A repeating data structure which is a rightmost
decendant and which is above or at the record level, may be assigned
the end-of-file as its range if the user does not specify a range
for it.

The mechanisms of SIZE and END arrays are not totally redundant,
There are some essential differences between the SIZE and END arrays.
Pirst, the array can define a minimum range of one, whereas the SIZE
can define a range of zero. This is because the END array must have at
least one value of boolean true. Secondly, the range specified by SIZE
array is finite. But the range specified by END array may be infinite
(through a user error in the range defining assertion, when there is no
first boolean true condition). This is not checked by the system.
Thirdly, the range specified by array SIZE.X(Il,..,Ik) may not depend on
the array element X(I1,..,In), while END.X(Il,...,In) may depend on
Xri,...,In). Por example, let X(1),...,X(k) be all the instances of an
one dimensional array X whose range is specified by SIZE.X=k. In the
program, the value of SIZE.X, i.e. k, must be computed before we
compute any of the elements of X. If END control array is used, the
range is specified by END.X(1), ... , END.X(k), and we only have to
ensure that END.X(I-1) is computed before X(I) for 1l<I«=k.

5.3 DEFINITIONS

Subscript variables belong to a special class of variables. While
an ordinary variable can assume only a unique value, a subscript
variable can take on a range of positive integer values. Subscript
variables can be used as indices in array element references or in the
same way as ordinary variables to compose cowmplicated expressions. The
meaning of subscripts is the same as their meaning in mathematical
usage.

The following definitions are used in discussing subscripts.

Definition Let X be an N dimensional array represented in the Array
Graph by a node. Let i be a positive integer. The tuple «X,i> is
referred to as a node subscript. It denotes the ith dimension of
the node of array X. Iet al be an assertion node, and I a
subscript variable referenced in the assertion al. The tuple
<al,.I» is referred to as a node gsubscript for I associated with the
assertion node al. If «n,d> is a node subscript, then R(«n,d>)
denotes its range.

Node subscripts are grouped into range sets. Every range set
contains the node subscripts which have the same range. However no two
dimensions of the same node can be put into one range set even if they
have the same ranges because every range set will later correspond to a
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level of nested loops in the generated program and no two dimensions of
the same node can correspond to the same level of nesting loops.

Dafinition The range of a subscript that has been declared as a glgbal
subscript is the same in all assertions where it is used. There
can only be one range associated with a global subscript.

Definition The range of a subscript that has not been declared as global
is fixed within the scope of the assertion where it is used. It
will be called a local subscript. A symbol used as a local
subscript can have different ranges in different assertions.

There are two types of global subscripts in MODEL. One is
specified by use of the qualifying keyword FOR_EACH in the prefix and a
repeating data structure name in the suffix. The other is explicitly
declared in a subscript declaration statement. (Refer to section
3.3.2.) The FOR_EACH type global subscript always has the range of the
repeating data group named in the suffix associated with it. A user
declared global subscript can have its range specified in the subscript
declaration statement. By using global subscripts in assertions, the
user can specify explicitly the range of assertion subscripts.

Local subscripts are all of the form SUBn wvhere n is a positive
integer. Users do not have to declare local subscripts (in subscript
statement ). The use of local subscripts in an assertion is like that of
formal parameters in a function definition. They can be chosen
arbitrarily within the scope of an assertion. This gives the user
freedom to reuse the subscript names in different assertions.

5.4 DISCUSSION OF RANGE PROPAGATION
5.4.1 CRITERIA FOR RANGE PROPAGATION

In this section we discuss the conditions for propagating the range
of a subscript from one node to another. A node subscript refers to
either an array dimension or an assertion subscript. If two node
subscripts are related through some dependency relation and one of them
does not have an explicit range specification, we propagate the range
from one to the other.

Let us conasider first a simple asserxrtion : B(I) = A(I) . Three
entities are involved : the source variable A, the target variable B,
and the assertion itself. All of them are one dimensional cbjects. The
assertion states that the kth instance of the assertion corresponds to
the kth instance of array B for all k in the range of B's dimension.
There is a bijective mapping between the instances of the assertion and
the instances of the array B. It is therefore very natural to believe
that the range of the target variable B is the same as the range of the
assertion. Additionally, from the subscript expression I in the temm
A(I) we can derive that the range of the assertion can be taken from the
range of the array A. In short, whenever a simple subscript variable is
ugsed as a subscript expression it strongly suggests that we may
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propagate the range from one node subscript to another.

When a subscript expression of the form I-k is used in an
assertion, where I is a subscript variable and k is a positive integer,
there exists a one—-to—one mapping between values of certain elements
indexed by I and I-k. The mapping may be interpreted in two possible
ways : assume the ranges of the arrays indexed with I and I-k
subscripts are the same, or assume that the variable with the I-k
subscript expression has k instances fewer than the variable with I
subscript. We have decided to adopt the simpler assumption, that is,
the ranges are the same. Therefore we will propagate ranges between the
node subscripts indexed by subscript expression I and I-k.

It should be noted that we do not intend to modify or ignore a user
specified range of a node subscript. The analysis mentioned above is
used for two purposes. One is to derive a range for a node subscript
which does not have an explicitly specified range. Second is to
determine if it is possible to put two node subscripts into the same
range set when both of them have user specified ranges and the ranges
are the same. When two node subscripts have user specified ranges, we
are interested in finding out whether their ranges are equal. Since
there is no simple way to determine if two functions are equal in
general, we will only check the assertions which define the range arrays
by the other range array.

$.4.2 PRICRITY OF RANGE PROPAGATION

User specified ranges are associated with repeating data structures
or declared global subscripts. The range specified for a data node is
interpreted as the range of its least significant dimension. Ranges of
node subscripts can be propagated along a path in the Array Graph from
one node to another based on the following relations between respective
node subscripts.

1. The two node subscripts are both global subscripts and have the same
global subscript name.

2. One of the node subscripts corresponds to a dimension of a data node
and the other corresponds to the same dJdimension number of the
associated control variable.

3. The two node subecripts occur on the corresponding dimensions of two
data nodes in the same data structure.

4, One node subscript is associated with an assertion node and the
other is associated with a source variable of the assertion.

5. One node subscript is associated with an assertion node and the
other is associated with the target variable of the assertion.

There may be several alternative paths (and directions) for
propagating a range, and the range derived for a node subscript may
depend on the choice of a path. The choice of path may also affect the
efficiency of the generated program. Therefore, we will propagate
ranges according to a priority order which attempts to obtain the
highest efficiency. The priority order is as follows.
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when a global subscript is used in several assertions, the ranges
of the respective node subscripts (in these assertions) are the same.
We may consider all the node subscripts with the same global subscript
name as a group. wWhenever any element in the group has its range
defined, we will propagate the range to other elements in the same
group. This type of propagation will have the top priority.

Next consider the data nodes and their associated control variables
such as SIZE.X, END.X, POINTER.X, LEN.X, ..., etc. The dimensions of
the control variables correspond to the dimensions of the variable named
in the suffix from left to right. The corresponding dimensions of a
data node and its associated control variables should have the same
range. Similarly the corresponding dimensions of a data node and its
higher level nodes in a data structure should have the same range.

If the range specification of local subscripts in assertions or
array dimensions are not given explicitly, we will derive them by
analyzing the respective subscript expressions in assertions. It is
preferable to propagate the range from a target variable to an assertion
rather than to propagate the range from a source variable to an
asgertion. Therefore, the range propagation between an assertion node
and its target node or between a data node and its associated control
variable will have the second priority.

Globally it is preferred to propagate the range from a variable in
an output file backward to a variable in an input file than reversely.
Thus we will assign the <third priority to the propagation from an
assertion node backward to its source variables and the fourth priority
to the propagation from a data node forward to an assertion node in
which it is referenced as a source variable.

Example Let array A be an input file with 20 elements, array C an output
file with 10 elements and array B one dimensional interim array.
The assertions

al: B(I) = A(I) ;

a2;s C(1) = B(I) ;
may lead us to assign either 20 or 10 as the range for array B,
depending on the point of view taken. As far as the correctness is
concerned, it does not make any difference whether 20 or 10 is used
as the range of array B. But a smaller range would mean potentially
less memory space and less computation time. Therefore <the latter
is more desirable. The range may be evaluated as follows. Since no
global subscripts are used here, no propagation corresponding to the
top priority can be achieved. The propagation from an assertion
node to the target variable is second priority, therefore, the range
of <«C,1> and «B,1> should be propagated to <a2,I> and <al,l»
respectively. The range of subscript <B,1> will be that of <A,1> or
<«C,1> depends on whether we give higher priority to the propagation
from <A,1l> to <al,I> or from <a2,I> to <B,1>. Since the latter has
the higher priority, the range is propagated from array C all the
way back to the assertion node al. (Refer to Fig. 5.1.)
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al: B(I) = A(I)

we

az2: C(I) = B(I)

we

A R(<A,l>):20

R(<al,I>»)=?

i
I
|
}
s R(<B,1>)=2?
s
\| R(<a2 3 I>)=?
|
|

J R(<C,1>)=10

Pd

——

Fig. 5.1 Example of Range Propagation

In summary, we have divided the range propagation into four
priority levels. The top level is based on use of global subscripts.
The second level is based on the relation between data node and its
associated control variables or between the assertions and their target
variables. The third level is to propagate the range from an assertion
backward to its source variables, and the fourth one is to propagate the
range from a data array forward to the assertions in which it is
referenced as a source variable.

5.4.3 REAL ARGUMENTS OF RANGE FUNCTIONS

Every node subscript will iterate over its range by a loop control
statement in the generated program. A node in the Array Graph having N
node subscripts associated with it will have an N level nested loop
enclosing it. Every loop controls the iteration of a corresponding node
subscript. We will show that the range specification of the node
subscripts may have influence on the orxrder that the loops can be nested
and on the order of subscripts in referring to a range array.

When the ranges of the dimensions of an array are all constant, the
array has a regular shape. We can access all of the array elements by
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iterating the subscripts in any order. Por example, if we have a
rectangular array A, we can access all of the array elements either
row-wise or column—wise. However, if some of the dimension ranges of an
array are specified by range arrays, it is no longer true that we can
nest the loops in any order. In Pig. 5.2(a) two arrays A and B are both
three dJdimensional arrays. T™he ranges of the third dimension of both
arrays are specified by the SIZE.A array. In Pig. 5.2(b), a part of the
flowchart for the specification in 5.2(a) is shown. The point is that
the loocp corresponds to node subscript <A,3> should be scheduled ingide
the loops of «<A,l> and <A,2>. Because the loop control statement for
<A, 3> references the range array SIZE.A and the value of SIZE.A depends
on the values of subscript <A,1> and <A,2>.

A IS PIELD;
B IS PIELD;

B(I,J.K) = A(I,J,K) ;
SIZE.MI,J) = £(I,3) ;

Pig. 5.2(a) A range array with real arguments

1 *
. DO «A,1l>;
DO <A,2>; :
L DO <A,3> = 1 TO SIZE.A(<A,L>,<A,2>);
E { A(<A,1>,¢<A,2>,¢<A,3>);
- B(<A,1>,<A,2>,<A,3>) = A(<A,1>,<A,2>,¢<A,3>);
& 3 B(<A,1>,<A,25,<A,3>);
, END;
1 END;
. END;

Pig. 5.2(b) FPlowchart of 5.2(a)

ol

A simple solution would be to require that the loops enclosing an
array are nested according to the hierarchical order of the array
dimensions. Thus, the dimension being declared on the top level of the
data structure will be scheduled on the outmost level. Because the
range of a dimension is not allowed to depend on the subscript value of
any lower level dimension in the data structure, in the example above
when the loop of <A,3> is to be scheduled, the loops of <A,1l> and <A,2>
would have Dbeen scheduled on the outer levels. However, this
requirement is unnecessarily strong. For example, if we follow this R
scheme, then all the two dimensional arrays will have to be computed i
row-wise. With this restriction we may lose the opportunity to generate
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an optimal program.

A gensralized solution would be to treat the range arrays as
functions and find the real arguments of the range functions. Por
example, an N dimensional range array SIZE.X(Il,...,In) may Dbe
considered as a function which maps an N tuple of integers I1, ..., In
to an integer value which is the range of the n+lth dimension of array
X. Every subscript of the range array may be viewed as corresponding to
an argument of the function. We will use the terms range array and
range function interchangeably. Some of the function arguments may not
affect the function value, namely the range does not vary with the value
of these subscripts. The rest of the arguments which do play roles in
determining the actual value are called real arquments of the range
function.

By analyzing the assertion which defines a range array, we can find
all the real arguments of the range array. If the range of a node
subscript «<n,d> is specified by a range array and the range array has
some real arguments, the real arguments of the range array should
correspond to some other node subscripts of node n. In the generated
program the loops which correspond to the real arguments should be
scheduled on the outside level of the loop which corresponds to the node
subscript <n,d>. For example, consider the specification 1in
Pig. 5.2(a). The range array SIZE.A has two real arguments, 1i.e.
«<SIZE.A,1> and <«SIZE.A,2>. Since the node subscript <A,3> references
the range array SIZE.A and the node subscripts «<A,l1> and <A,62»
correspond to <«SIZE.A,l> and <SIZE.A,2> respectively, node subscripts
<A,1> and <A,2> will be stored in the real arqument 1list of node

subscript <A,3>. It is shown in Pig. 5.3. The loop iterated on <A,1l>
and <A,2> will be scheduled on the outside of the loop on «<A,3>.
Similarly, we can find the real argument lists for ¢al,K> and «B,3>. !

A




SIRE.A | <SIZE.A,1>{] <SIZE.2,2>

Y

. =
<A,l> <A,2> <A.3> |

| ; ] P

i : ! <p,1>
| ' I <A,2>
| |

1 ! !

1 | !

,Tk

<al,I> [} <al,i> || <al,k -—1
<al,I>
<al,J>

s o o e e e
ot ot i e > -

N

<B,1> 1 <B,2> <B,3>

<B,1>
<B,2>

Fig. 5.3 Real argument lists of node subscripts

Example We will show how <transposing an array effects the wapping
between the real arguments of the range arrays. Let us examine the
following assertions.

B(I,J,K) = A(J,I,K) ;

SIZF.A(M,N) = h(M,N) ;
Assuming that R(<A,1>) is equal to R(«B,2>) and R(<A,2>) is equal to
R(<B,15). The range for subscript «B,3> is obtained from R(<A,3>)
which is given Dby SIZE.A. SIZE.B(N,M) should be equal ¢to
SIZE.A(M,N). All we need is a permutation of subscripts to make the
range array SIZE.A the same as SIZE.B. A possible flowchart for the
loops enclosing node A and B is shown in Pig. S5.4.




DO <A,l> ;
DO <A,2> ;
DO <A,3>= 1 TO SIZE.A(<A,1>,<A,2>) ;
A(<A,1>,¢<A,2>,<A,3>) ;
END ;
END ;
END ;

DO <B,1l> ;
DO «<B,2> ;
DO «<B,3>= 1 TO SIZE.A(<B,2>,<B,1>) ;
B(<B,1»,¢<B,2>,¢B,3>) ;
END;
END ;
END ;

R add i Tt

; .

Y Dt L

Pig. 5.4 Transposition of real arguments of
a range array

j It should be noted that the order of the node subscripts <B,1> and «B,2>
‘ in the range array reference SIZE.A( <B,2>,<B,1>) is significant in the
| loop control statement for <B,3>. Therefore, in the real argument 1list
asgsociated with the node subscript <«B,3> we should store the real
arguments in the order of «<B,2> followed by <B,1>. (Refer to Pig. 5.5)

Bl il Sl i
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Fig. 5.5 The order of real arguments in the
real argument list

5.5 RANGE PROPAGATION ALGORITHM ( RNGPROP)

The range propagation algorithm consists of three steps. Pirst of
all, we locate the node subscripts which have user specified
ranges (Algorithm 5.1). In the second step we propagate the explicit
range specifications by partitioning the node subscript set into range
sets (Algorithm 5.2). In the third step, we will propagate the real
argument list(RAL) among the node subscripts in the same range
set (Algorithm 5.3).
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The data structure used are as follows. The total number of node
subscripts is denoted by SALLSUBS. Every node subscript is assigned a
unique sequence number. A vector TERMC(DICTIND) of integer denotes the
kind of range specification used for the least significant dimension of
each node. It can have the values of 1-4 to denocte the following
conditions:

1: the data structure has a constant number of repetition.
2: the range is specified by an END array.
3: the range is specified by a SIZE array.
4: the range is implied by reading an end of file.
The vector LTERMC provides the same information for node subscripts as
TERMC for the nodes. The contents of TERMC and LTERMC are computed by
Algorithm 5.1.
Algorithm 5.1 Find User Specified Ranges
Output:
TERMC: The type of user specified range of every node in the Array
Graph.
LTERMC: The type of user specified range of every node subscript.
1, Initialize the vectors TERMC and LTERMC to O.
2. Por each node n, in turn do:

If attribute VARYREP=0, then TERMC=1.

If attribute ENDB>O, then TERMC=2.

If attribute SIZEB>0, then TERMC=3,

3. Por every node n, in turn do:
If TERMC(n) is not equal zero, find the node subscript «n,d> which
corresponds to the least significant dimension of node n. Set the
LTERMC entry of the node subscript to TERMC(n).

Three arrays, HEADER, SETNEXT, and LRANGEP are used in step 2.
Each of them has SALLSUBS number of entries. HEADER(I) gives the
sequence number of the header element of the block to which the Ith node
subscript belongs. SETNEXT(I) links the Ith node subscript to the next
node subscript in the same block, if any. When the Ith node subscript
is the header of a block, then LRANGEP(I) shows the range of the Ith
subscript. Algorithm 5.2 partitions the set of all the node subscripts.
Initially every node subscript forms a block by itself. Then whenever
we find that two node subscripts could have the same range and no range
conflict would occur, we will merge their blocks. This merging process
will continue until no further merging can be done. Since every node
subscript can only be in one block at any moment, this is in fact a
disjoint-set union problem(AHU 74]. The blocks formed in Algorithm 5.2
are called range sets.

Algorithm 5.2 Propagation of Range Specification

Input:

LTERMC: The type of user specified range for every node subscript.

Output

RANGE: A field in the LOCAL_SUB data structure of every node subscript.
It contains the range set number where the node subscript
belongs.

SRNGSET: The total number of range sets.

SETSRNG: The node number of the header of a range set.

pata structures:

SALLSUBS: The total number of node subscripts.

HEADER( SALLSUBS): The node number of the header of the range set of a
node subscript.
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SETNEXT( SALLSUBS ): Por every node subscript, it points to the next node
subscript of the same range set.

LRANGEP( SALLSUBS ): If a node subscript is not the header of any range
set, the value 1is -1. Else, if the node subscript has a user
specified range, the value is the data node number of the range.
Otherwise, the value is O.

1. Initialization.

Make every node subscript a block by itself. For all values of I
from 1 to SALLSUBS do:
HEADER( I )=I,
SETNEXT(I)=0, /* NO NEXT ELEMENT */
LRANGEP( I )=node of the range /* IF IT HAS A DEFINED RANGE */
=0, /* OTHERWISE */

2. Merge blocks of the same global subscript name:

For every node subscript with sequence number I, check whether it has
a global subscript name. If it is a global subscript of the form
FOR_EACH.X or user declared subscript X, let J be the sequence number
of the node subscript which is associated with the least significant
dimension of node X. Call procedure UNION(I,J) to merge the blocks
containing these two subscripts.

3. Propagate ranges between data nodes and control arrays

or target nodes and assertion nodes:
Por every edge in the Array Graph with edge type not equal to 3 check
the type of the subscript expressions associated with the edge.
These edges connect data arrays to the associated control arrays and
the assertion nodes to their target variables. For every subscript
of the source node, find the corresponding subscript in <the target
node. If the APR_MODE of the subscript expression is 1 or 2, wmerge
them using procedure UNION. _

4. Propagate ranges from assertion to source variable:

Scan all the edges of type 3 which connect a source variable to an
assertion. The range is to be propagated backwardly. If the
subscript of the source node has a defined range, no merge will be
done. Otherwise check if the APR_MODE of the subscript expression is
1l or 2. If yes, call procedure UNION to mexrge it with the
corresponding subscript of the target node.

5. The same as step 4. Except that no merge will be done if the
subscript of the target node has a defined range.

6. Check the header of each block. If it does not have a user defined
range, check the elements of the block. If there exists an element
which is associated with a data node at or above record 1level and
being the rightmost node in an input file structure, we may use
end-of-file as the default range.

7. Assign a range set number to every block of the partition. If a node
subscript belongs to the kth block, put k into the RANGE field in the
data structure LOCAIL_SUB of the node subscript. Also store the node
number which gives the range information of the block in SETSRNG(k)
entry.

Procedure UNION(I,J)

Input:

I,J: The subscript sequence numbers of two node subscripts for which

the range sets will be merged.

Output:

Modify the data structure HEADER, SETNEXT, and LRANGE to reflect
the merging of the two range sets.
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1. If both subscripts I and J are in the same block, exit.

2. If the blocks containing subscript I and J have different ranges,
exit.

3. Put HEADER(I) into A.

4. Put HEADER(J) into B.

5. Change the HEADER entries of all the elements in the same block as J
to A.

6. Append the list with the header B to the list with the header A.

7. Replace LRANGEP(A) by LRANGEP(B) if LRANGEP(A)=0.

8. Set LRANGEP(B) to -1.

Step three examines all the range sets. If the range of a range
set is specified by a range array, a RAL is computed for every node
subscript in the range set.

Algorithm S5.3. Propagation of Real Argqument List

Input:

LTERMC: Type of user specified range of every node subscript.

RANGE: A field in the LOCAI_SUB data structure of every node subscript.
It contains the range set number where the node subscript
belongs.

Output:

RALP: A field in the data structure LOCAL_SUB of every node subscript.
For every node subscript whose range is of types 2, 3, or 4, it
points to a list of real arguments of the range function.

Data structure:

The real argument list pointed to by RALP congsists of a list of
elements which are stored in the data structure RAL. The fields
in the RAL are as follows.

SRAL: The number of real arguments.

RSPOS(SRAL): The subscript position of a real argument in the range
array.

MSPOS(SRAL): The subscript position of the corresponding real argument
in the node subscript list.

1. Por each node subscript which has a user specified range and the
termination criterion is not constant, form the RAL for it and put it
into a candidate queue. (Refer to Algorithm 5.4)

2. Iterate step 3 to step 7 until the candidate queue becomes empty.

3. Get a node subscript from the queue. Let it be the subscript S of
node X. Propagate the RAL of S to other node subscripts in step 4,
5, 6, and 7, If any node subscript gets its RAL newly defined, put
it into the candidate queue such that its RAL can be propagated to
other subscripts.

4. Por each outgoing edge from node X, propagate the RAL of subscript S
from node X to the target node. (Refer to Algorithm 5.5)

5. Por each incoming edge into node X, propagate the RAL of subscript S
from node X back to the source node. (Refer to Algorithm 5.6)

6. If subscript S references a global subscript, propagate its RAL to
the global subscript.

7. If subscript S is a global subscript, then propagate its RAL to all
the subscripts which reference its name.

8. Stop.

Algorithm 5.4. Pind RAL from a range specifying assertion

Suppose the range of the subscript «X,n» is specified Dby an
assertion. Let the range array be SIZE.X or END.X. The algorithm tries
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to find the RAL for subscript <X,n».

1. Put all the subscripts of the target variable of the assertion which
defines the control variable SIZE.X or END.X into a list.

2. If the target variable is END.X, delete the subscript on its least
significant dimension from the list.

3. Repeat for each of the subscripts in the RAL to check whether it is
referenced on the right hand side. If yes, it is a Real Argument.
Otherwise, delete it from the list.

4. The resulted list is the RAL of the subscript «X,n».

Algorithm 5.5. Propagation of RAL forward along an edge

Assume S1 is a subscript of node X and there is an edge E from node
X to node Y. The algorithm propagates the RAL of S1 to some subscript
of node Y.

1. If the subscript expression of S1 is not type 1 or type 2, exit.

2. Let the corresponding subscript of node Y be S2. If RAL of S2 is
defined, exit.

3. If the ranges of S1 and S2 are different, exit.

4, For each subscript in the RAL of S1, check its subscript expression
type. If any one of them is not type 1, exit. Pind their
corresponding subscripts in node Y and form a new 1list. If the
ranges of the corresponding subscripts are not the same, exit.

5. The newly formed subscript list is the RAL of S2.

Algorithm 5.6. Propagation of RAL backward along an edge

Assume Sl is a subscript of node X and there is an edge E from node
Y to node X. The algorithm propagates the RAL of S1 to some subscript
of node Y. '
1. If there is no subscript of node Y corresponding to subscript S1,
exit.
2. let the corresponding subscript of node Y be S2. If RAL of S2 is
defined, exit.
3. If the ranges of S1 and S2 are different, exit.
4. Por every subscript Xi in the RAL of Sl find its corresponding
subscript Yj of node Y.
4.1 Let the subscript position of Xi in the local subscript 1list of
node X be i.
4.2 Check the LOCAI_SUBS field in the data structure EDGE_SUBL
associated with edge E. If the jth LOCAL_SUBS is equal to i, the
jth node subscript Yj in the 1local subscript list of node Y
corresponds to Xi.
4.3 Check the APR_MODE corresponding to subscript Yj in edge E. If
it is not 1, exit.
4.4 Check the RANGE field of the node subscript Yj and that of
subscript Xi. If they are different, exit.
5. Form a subscript list which contains those subscripts Yj's of node Y.
It is the RAL of subscript S2.

Algorithm 5.7, Propagate RAL between Global subscripts

Suppose subscript S1 of node X and subscript S2 of node Y have the
same global subscript name. The algorithm propagates the RAL of Sl to
82.

1. If the RAL of S2 is defined, exit,
2. Por each subscript T in the RAL of S1, get its range, say RT. Check
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all the subscripts of node Y. If there is one and only one subscript
U which has the same range as subscript T, then subscript U is the
corresponding subscript of T. Otherwise, exit.

3. Porm a subscript list which contains those subscripts U's of node Y.
It is the RAL of S2.

¢ ) Ll do
v g il
Alael e M B e -

5.6 DATA DEPENDENCY OF RANGE INFORMATION

. In section 4.4.2 we have mentioned that range arrays cause implicit

- data dependency relationship. The edges of type 13 and 14 in the Array
' Graph represent this type of data dependency. However, it is not enocugh
if we only have the edges from a range array SIZE.X or END.X to the node
X. Por every node in the Array Graph, no matter whether it is a data or
an assertion node, as long as one of its node subscripts is in a range
set where the range is deined by a range array, an edge should be drawn
from the range array to that node.

. We can tell the range of every node subscript only after the range
k ‘ propagation phase. Therefore, the correct time to add this type of data

' dependency relationship is after we have found all the range sets. If a
range set has a range array as its range specification, then there will
be edges emanating from the range array and terminating at every node in
the range set. Subscript expressions of type 1 are associated with the
edges emanating from a SIZE range array. Subscript expression of type 2
is associated with the least significant dimension of an END range array
and type 1 subscript expressions are associated with the other
dimensions of the END range array.

- —
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CHAPTER 6

SCHEDULING

6.1 OVERVIEW OF SCHEDULING

Through the phases of. data  dependency analysis, dimension
propagation, and range propagation we have analyzed the user's
specification and checked the consistency and completeness of the
specification. In a non—procedural programming language, the execution
sequence is not specified in the program specification. The objective
in this chapter is to determine the order of execution in performing the
specified computation. We have collected the needed information in the
convenient form of the Array Graph. The Array Graph contains all the
program activities as nodes and the data dependency relationships .as
edges. The next step toward constructing a program is ordering the
program activities represented by the nodes of the Array Graph under the
constraints posed by: a) the edges of the Array Graph, and b)
congiderations of computation efficiency. As stated in chapter 1,
efficient scheduling is one of the main contributions of the reported
research. This method of synthesizing the program is called schedulinq
here. It is followed by the actual program code generation.

Two rules which are frequently accepted in programming, except in
cases where memory limitations are extremely severe, will be followed
here as well., The first is that every input file is to be read only
once. This rule will reduce the number of input activities which are
usually relatively slow. If necessary we may store the input data in
the memory for repetitive use. However, sometimes the memory price may
be very high due to the large capacity of external storage. The second
rule is <that no values are to be recomputed. This means that once an
element has been computed it will be retained as long as it 1is needed
for later reference.
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6.1.1 A BASIC APPROACH TO SCHEDULING

A correct but often inefficient realization of a computation can be
obtained through the following scheduling method. Our eventual approach
will be partly based on this simpler basic approach. The acyclic
portions of an Array Graph may be scheduled very simply as follows. A
topological sort algorithm can be applied to obtain a linear ordering of
the nodes in the graph in accordance with the edge constraints.
Multi-dimensional nodes are then enclosed within nested 1loop controls.
Every loop iterates the respective node over the instances of one of the
distinctive node subscripts of the node.

When there are cycles in the Array Graph, a topological sort will
not succeed. Superficially, a cycle in the Array Graph means a circular
definition which does not allow us to determine a linear order for the
computation. Actually since the Array Graph masks some of the details
of the relationships in the corresponding Underlying Graph (see Chapter
4), there may be a cycle in the Array Graph where there are no cycles in
the corresponding Underlying Graph. Also iterative solution methods can
be applied to perform the computations even where there are cycles in
the Underlying Graph. We have to apply a deeper analysis of the nodes
and subscript expressions used in assertions in the cycle. The cycles
that are found to be really not circular can be resolved to generate a
linear schedule. The method employed is briefly described as follows.
The Array Graph is decomposed into subgraphs. Each subgraph is a most
strongly connected component (MSCC). A MSCC in a directed graph is a
maximal subgraph in which there is a path from any node to any other
node. The deeper analysis is then applied to the MSCC components in the
Array Graph. The analysis described in section 6.2 consists of search
of a dimension that is common to all the nodes in the MSCC. If an edge
is found in the MSCC which has an I-k type subscript expression
associated with it, the edge may be deleted. This sometimes results in
an acyclic subgraph which can be topologically sorted. If this method
is not successful then other analysis wmwethods, or alternatively an
iterative solution method may be applied.

6.1.2 EPPICIENT SCHEDULING

In general, a schedule which satisfies the constraint of the data
dependency relationship is not unique, if one exists. Therefore, there
is a degree of freedom to select a schedule which meets efficiency
requirements as well, We want to have a schedule with the fewest number
of loops or with the least amount of working storage for the program
variables. Although we will use here the results of the basic
scheduling approach mentioned above, our method of scheduling coneists
essentially of a process of repeated merging of bagic MSCCs in the Array
Graph. As will be shown, in this way we can reduce the use of mewory
and computation time.

Non—-procedural programming uses as many variables as the values

that occur during the program computation. If we simply allocate
separate memory space to each variable, as may be done in the basic
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approach, we will most probably get a program which uses a large amount
of memory space and in some cases may not be executable. Therefore, we
are here primarily concerned with memory efficiency of the program. Our
approach is to examine the effect on use of memory due to wmerging of
blocks of nodes of the same or related subscript ranges and form
iteration loops for the selected subscripts enclosing the merged blocks.
We will select mergers of Dblocks of nodes which reduces the use of
memory the most.

In some cases we have an alternative of maximizing the scope of one
loop at the cost of reducing the scope of one or more other loops. The
choice of which loop scopes are wmaximized is based on cowmparison of
memory requirements of the alternatives. The alternative that requires
least memory space for program variables will be selected.

The repetitions indicated by the node subscripts are controlled by
loop statements. The execution of loop statements takes sowe CPU time.
If the loop scopes in a program are small, i.e. if they contain fewer
nodes, then there will be more loops in the program and the overhead
spent on the loop control statements will be increased. This is another
reason why it is desirable to maximize the loop scopes in the generated

programs.

6.1.3 OUTLINE OF THE CHAPTER

The material in sections 6.2, 6.3, and 6.4 forms a background to
understanding the optimization in the scheduling algorithm. In section
6.2 we will discuss the analysis of MSCCs. The algorithm of our
optimizing scheduler is based on deeper analysis of cycles. A similar
approach was used previously in an earlier version of the MODEL
processor. Some changes discovered in the course of the presently
reported research have been addeq. The merger of components is
discussed in section 6.3. Thexe are two bases for merging of
components: when components have the same subscript ranges and when
they have related range (this is explained later). In section 6.4 we
will introduce the memory penalty concept which will be used to evaluate
the use of memory in a partially designed schedule. The memory penalty
is the memory cost associated with a candidate subschedule. The
scheduling algorithm is presented in section 6.5.

6.2 ANALYSIS OF MSCC
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6.2.1 CYCLES IN THE ARRAY GRAPH

A cycle in the Array Graph means that a variable definition depends
directly or indirectly on itself. An Array Graph is a compact
representation of an Underlying Graph. It does not show the details of
precedence relationships in the Underlying Graph. Therefore, the
apparent circularity may be deceptive and not be reflected in the
Underlying Graph. In this case a correct computation wmay be realized
for an Array Graph cycle.

Consider for example the assertion in Pig. 6.1 which defines the
factorial function. Because of the recursive definition there is a
cycle in the Axrray Graph. But there is no cycle of precedence
relationship in the corresponding Underlying Graph. Therefore, there
exists a precedence ordered sequence for computing all the factorial
values,

a(I): F(I) = IF I=1 THEN 1 ELSE I*F(I-1) ;

(a) ‘Assertion

a(l) (2) vt (9

p(l) - . .

(b) Array Graph (c) Underiying Graph

Fig. 6.1 Example of cycles in the Array Graph

A MSCC in the Array Graph may or may not represent a circular
definition. If it is not truly circular, we may be able to perform the
respective computation by using an iteration loop. In section 6.2.2 we
will discuss the conditions under which a MSCC can be enclosed in a
loop. If these conditions are met, we will find the loop parameter to
bracket the entire MSCC. Once such loop is found, since the loop
indices are ascending, the precedence relationships Dbetween the
respective loop instances is assured. Therefore, as shown in section
6.2.3 we delete edges with I-k subscript expressions and the MSCC may be
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decomposed, If the above method fails, there are other approaches to
schedule a MSCC which will be discussed in section 6.2.4.

6.2.2 ENCLOSING A MSCC WITHIN A LOOP

The objective of iterative computations of a single data or an
assertion node is to define all the elements corresponding to the values
of node subscripts associated with the node. In general, the values of
every node subscript can be stepped independently of other node
subscript values. Therefore, a node with N node subscripts would have
an N level nested loops enclosing it, and each level of the nested loop
corresponds to one distinctive node subscript. We will associate with
every loop a loop variable with values which are stepped up by one from
one to the upper bound of a subscript range. All the nodes inside the
scope of a loop will be exscuted once for every possible value of the
loop variable. Generally if a node does not have a node subscript
corresponding to a loop variable, the repetition would be redundant. We
want to treat an entire MSCC in some manner as a single node, i.e. to
compute all the elements of the nodes in the MSCC iteratively. We
require however that all the nodes of a MSCC have a node subscript with
which a loop brackets the MSCC. If one of the nodes does not have such
a node subscript then the activity represented by the node, such as
input/output, may Dbe repeated, which will cause an erroneous
computation. All the distinguished dimensions wmust then have the same
range. It should be noted that the loop variable is stepped up each
iteration by one, and no computation of a loop instance can depend on
any computations in later loop instances.

Given a MSCC in the Array Graph, we will first check if all the
nodes in the MSCC have more than zero dimensions. If every node does
have at least one dimension to schedule, we will then check the
subscript expressions on the edges of the MSCC to see if the entire MSCC
can be enclosed within a loop. The edges in the Array Graph represent
relationships between some elements of the nodes at the ends of the
edges. The subscript expressions associated with edges reveal more
precisely the precedence relationships between specific elements. 1In
the following we examine the subscript expressions associated with an
edge to determine if the nodes at the end of the edge can be scheduled
within the scope of a loop.

Definition Let A be a node of n dimensions. Then A denotes the set of
all the instances of node A, i.e. A= (MI1,...,In)}
le=Ik<¢=R( ¢A,k>), for lc=kc=n }.

Definition Let A be a node of n dimensions. Then A(Ii=Cl; Ij=C2; ...)
denotes the set of all the instances of node A with the ith
subscript Ii being Cl and the jth subscript Ij being C2, ... etc.

Congider an edge from node A(Jl,...,Jm) to node B(Il,...,In) in the
Array Graph:

B(Il,...,m,...,rn) | Smamae M!lpoo.,!p'o."m)
where J's and I's are the node subscripts of node A and B respectively,
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and E's are the subscripting expressions of A. Consider the subscript
expressions of types 1, 2, 3, and 4.

1)

2)

3)

If a subscript expression Ep is of type 1 and equals to Ik, then
every element in B(Ik=c) dépends only on the elements in A(Jp=c).
Since B(Ik=c) does not depend on any element in A(Jp=d) with d>c, the
Underlying Graph dependencies are satisfied if node A, followed by B,
are bracketed by a loop where the parameters of the iteration are the
pth dimension of A and the kxth dimension of B. These are referred to
as a distinguished dimension of A or of B.

If the subscript expression Ep is type 2 or 3 and equals to TIk-a,
then for any positive integer c every element in B(Ik=c) depends only
on the elements in A(Jp=c—-a). Since the parameters of the bracketing
loops are in ascending order (in step of 1) then this assures that
MJIp=d) is computed before B(Ik=c) with d<c. Thus it is allowed +to
schedule node A and B into one loop, with Ik and Jp the distinguished
dimensions.

If the subscript expression Ep is type 4, then for any positive
integers ¢ and d every element in B(Ik=c) may depend on elements in
A(Jp=d)., We will be conservative and assume that every element in
B{Ik=c) depends on at least one element in A(Jp=d) with d>c.
Therefore, it is impossible to designate the pth dimension of A and
the kth dimension of B as the distinguished dimensions for a loop.

Example Given an assertion al as follows. Let A and B be square arrays.

There is an edge from array node A to assertion node al.

ai(r,J): B(I,J) = A(qg,JT);
where g is a type 4 subscript.

Consider the node set (A,al). Consider scheduling this set into
one loop with «<A,1> and <al,I> as their distinguished dimensions.
Let SA be (A(J1l,J2)|J1=2) and SB be (al(I,J)|I=1). SB is in the
first instance of the loop and SA is in the second instance of the
loop, therefore SB precedes SA. Consider next the element al(l,2)
of SB. We can find an element A(2,2) in SA which precedes al(1l,2)
because of the type 4 subscript on <A,1l> dimension. SB and SA then
precede each other, in the Underlying Graph, and therefore can not
be acheduled.

Example Given the assertion a2 below.

az(I1,J): Y(I,J) =X(I,J) + X(J,I);

X is a square array and subscripts «<X,1l>, <a2,I>, and «a2,J»> have
the same range. We want to schedule the node set (X,a2} in one
loop with <X,1> and <a2,I» as the distinguished dimensions.

All the subscript expressions being used with node X are not type
4. However, in the term X(J,I) a subscript J occurs on the
distinguished dimension of X, i.e. <«X,1>. Since <a2,J> does not
correspond to the distinguished dimension of node a2, it may be
scheduled in an inner level loop and iterates faster than <a2,I»,
therefore some array elements of X will be referenced before
defined. Thua we gshould not form a 1loop with these dJdesignated
distinguished dimensions.

From the examples above we know that the subscript expression on the
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distinguished dimension of a node must not be a general expression and
it should correspond to the distinguished dimension of another node in
the same loop, otherwise the loop can not be formed. Since the loop
instances are strictly running upward starting from one and all the
subscript expressions on the distinguished dimensions are of the form I
or I-k, no reference goes to the later 1loop instances, therefore, no
data dependency relationship is violated. 1In fact, by constructing the
loop we have divided the whole computation into many smaller tasks where
every task corresponds +to a loop instance. It should be noticed that
the formation of an outer loop does not exclude the posgibility that the
original computation involves an unsolvable cycle. What we are assured
is that the outer loop divides the original problem into smaller cnes
and which can be solved easier.

6.2.3 DECOMPOSING A MSCC THROUGH DELETION OF EDGES

Consider now the case where an MSCC is scheduled in one loop based
on the tests described in the previous subsection. The nodes in the
MSCC have each a distinguished dimension which corresponds to the loop
variable. Also the subscript expressions associated with the
distinguished dimensions are of the form either I or I-k. We will show
in the following that where the parameter of the loop is stepped up from
one by a step of one then edges which have a subscript expression of
type 2, i.e. I-k, are superfluous and can be removed.

Consider an edge of the form B(...,I,...) ¢— A(...,I-k,...) where
I~k and I occur on the pth and the qth dimension of nodes A and B,
respectively. If node A and B are scheduled in the loop of I, then the
elements in A(Jp=I-k) have been evaluated in the I-kth loop instance and
the elements in B(Ig=I) are evaluated in the Ith loop instance. Since
the values of loop variables are ascending, therefore every element of
A(Jp=I-k) precedes all the elements of B(Ig=I). This implies that the
precedence relation represented by the above edge is superflous as it is
enforced by the order of evaluation of the respective elements. In
short, when two nodes are scheduled in a loop of loop variable I, the
precedence relationship presented by subscript expression I-k is
subsumed by the order of loop execution. This is illustrated in
Pig. 6.2, showing the Array Graph of a Pactorial function which is
defined with recursion. The recursion causes a cycle of two nodes (al,
FAC).
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al: FAC(I) = IF I=1 THEN 1 ELSE I*FAC(I-1) ;

al |(<al,I>) al

3|(z-1) 7D 7

y @ (<FAC,1>) FAC
1

Pig. 6.2 Remove I-k edges in a loop

These two nodes can be scheduled in a 1loop iterating over node
i subscript «<al,I>. The kth instance of the assertion al is evaluated in
3 the kth loop instance and it references the k-1th instance of the array
; PACT, which has been evaluated previously in the k-1th loop instance.
Therefore the edge associated with subscript expression I-1 can be
removed. There is no further a cycle in the Array Graph.

6.2.4 OTHER APPROACHES TO DECOMPOSING AN MSCC

There are a number of methods for scheduling a MSCC in an Array

Graph. We have been primarily interested in the cases that a cycle can

be implemented by a loop with the parameter that runs upward from one. T

However, not all the cycles can be implemented with this simple loop

L mechanism. Thus if the above approach fails it will be necessary to

x apply other methods. Consider first the case where the array elements

may be evaluated in a sequence which does not follow <the natural

ascending order of subscripts. Consider for example the following
specification which defines A, a vector of 50 elements.

Example
A(I) = IP I=25 THEN X
ELSE IF I<25 THEN A(I+2)+X
ELSE A(I-1)+A(I-25) ;
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A possible PL/I program to compute array A is as follows.
A(25) = X ;
DO I = 23 TO 1 BY -2 ;
A(I) = A(I+2)4X ;
END ;
A(26) = A(25)+A(1) ;
DO I = 24 TO 2 BY -2 ;
A(I) = A(I+2)4X ;
END ;
DO I = 27 TO SO ;
A(I) = A(I-1)+A(I-25) ;
END ;

When the subscript expressions are first order polynomials, we can

divide an array nodes into many parts and compute the parts of the array
separately (SHAS 78].

A cycle in the Array Graph may also be considered as a set of
simultaneous equations and numerical methods such as Jacobi and
Gauss—-Seidel iterations can be applied to solve the system of equations
{GREB 81]). Since splitting nodes in the Array Graph, as suggested by
Shastry, is complicated to apply, the MSCCs which can not be decomposed
may be treated similar to simultaneous equations and solved iteratively.
In this disgsertation we will refer only to the cases that a MSCC can be

decomposed as described above. The other methods are described in the
references.

6.2.5 A SIMPLE SCHEDULING ALGORITHM

The methods of scheduling an MSCC in a loop and attempting to
decompose a MSCC may have to be applied repeatedly, depending on the
outcome of each application. 'This section describes a simple scheduling
algorithm which incorporates repeated application of the methods
described earlier. It generates a correct schedule based on an Array
Graph. However it does not include the consideration of program
efficiency.

The algorithm consists of two mutually recursive procedures,
SCHEDULE_GRAPH and SCHEDULE_COMPONENT. Given any Array Graph as input,
SCHEDULE_GRAPH procedure finds the MSCCs in the Array Graph. The MSCCs
are then sorted into a sequence {M1,M2,...,Mn} which retains the partial
order of the precedence relationships between the MSCCs.
SCHDULE_COMPONENT procedure then schedules each component separately.
If Si is the schedule of component Mi, the sequence (S1,52,...Sn} is
returned as the schedule of the original graph.

The input to procedure SCHEDULE_COMPONENT is an MSCC, say Mi. If
Mi is a single node component and there is no unscheduled node subscript
associated with it, the node itself is returned as the schedule of the
component. Otherwise, the component may be schedulable in a loop. The
procedure tries to find a loop variable which satisfies the requirements
discussed in the previous section. If a loop variable is found, say I,
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it then deletes the edges in component Mi with subscript expression I-k
and marks the distinguished dimensions of the nodes in Mi as scheduled.
Let Mi' denote the resulting graph. Then it calls the procedure
SCHEDULE_GRAPH to produce a schedule for the graph Mi°, After
SCHEDULE_GRAPH returns the schedule of Mi‘', a loop with loop variable I
and loop body, the schedule of Mi' is formed by SCHEDULE_COMPONENT and
returned as the schedule of Mi. If no loop variable can be found,
SCHEDULE_COMPONENT sends a warning message to the user and calls the
procedures described in section 6.2.4 to decompose the MSCC.

6.3 MERGER QOF COMPONENTS TO ATTAIN HIGHER EFFICIENCY

The basic scheduling algorithm, described above, consists
essentially of topological sorting of the nodes or MSCCs in the Array
Graph and of the enclosing of these entities within the scope of nested
loops for the respective dimensions. In contrast, the scheduling
algorithm offered here considers the Array Graph globally and
progressively merges components into the scope of a selected loop which
reduces the most the use of memory and computing time. The scope of the
loops in the schedule is thus progressively enlarged.

Given an Array Graph as input, we can construct a component graph
where every MSCC is a component node and an edge is drawn from component
A to component B if and only if there exists an edge in the original
Array Graph which leads from a node in the component A to a node in the
component B, The component graph is an acyclic graph. Note that the
MSCCs in an Array Graph are not further divisible. The mexrgexr process
starts with the MSCCs in the Array Graph as the basic components, and
through merger it creates larger components progressively. A loop scope
can be the union of some MSCCs. In this section we will discuss the
merging of MSCCs in an Array Graph into the scope of one loop.

6.3.1 MERGER OF COMPONENTS WITH THE SAME RANGE

The condition for scheduling a set of component in one loop is that
every component in the scope of a loop have a distinguished dimension
corresponding to the loop variable, There are several condition on
designating distinguished dimension of a node in an Array Graph or a
Component Graph. Pirst the distinguished dimensions of the components
must be in the same range set and have a common range which specifies
the number of iterations of the loop. The loop variable is stepped up
by one in successive iterations. Therefore also the order of execution
of elements of each component will be evaluated in this oxder. The
second condition is that an evaluation of each instance of a component
in a loop instance should not refer to values computed in later loop
instances.

Purther, components to be merged into the scope of a loop may not
depend on any other component which doces not have a distinguished
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dimension and which in turn depends on one of the components to be
merged. The rule is that a set of components which can be scheduled in
one loop should be equal to its closure. The closure of a set of
components includes all the components which are reachable from any
component in the set and which alsoc reach any component in the set. Por
example, consider the component graph in Pig. 6.3. The components Cl,
C2, and C4 have a common dimension I. Still they can not be merged into
the scope of a loop with the loop variable I. The closure of the set of
components {Cl, C2, C4) includes component C3. Since C3 does not
iterate with subscript I, it can not be scheduled in the loop of I.
Component C4 can be scheduled only after component C3. Therefore, at

most we can merge components Cl and C2 or C2 and C4 into the scope of a
loop.

The set

Pig. 6.3 Closure of a set of components

The search and selection of a distinguished dJdimension for each
component in a set is similar to the analysis of subscript expressions
in MSCCs described in section 6.2. We showed there that the subscript
expressions associated with edges temminating at a component can not be
type 4 and that subscript expressions associated with the edge should
connect the distinguished dimensions of the components at the ends of
the edge.
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6.3.2 OF COMPONENTS WITH SUBLINEARLY RELATED RANGE

In the previous subsection, we considered merging components with
distinguished dimensions which have exactly the same range as the loop
variable. Every node is then executed once in each loop instance.

There is a large class of cases where subscript expressions are
explicitly related, i.e. where we use an indirect subscript X(I) and X
is a function of I. Statements with such an indirect subscript may in
some case be conditionally executed in the scope of a loop for the
parameter I. We will require that the indirect subscript expression
X(I) have values vhich grow monotonically and slower than that of the
loop variable I. This feature of sublinearity was already mentioned in
gsection 4.4.2. As explained in (PNPR 80], use of indirect sublinear
subscript is important in many instances, such as selecting a subset of
records from a sequential file or merging two sequential files into one.

In section 4.4.2 we have discussed the criterion for recognizing a
vector which can be used for indirect indexing. The values of elements
of an indirect indexing vector grow siower than the subscript value of
the elements. The range of its dimension will be called here the major
range, while the range of its content will be called subrange relative
to the major range. Por example, the variable X in Fig. 6.4 satisfies
these criteria. X is used in the subscript expression of the first
dimension of node A and therefore R(<X,1l>) is a major range and R( <A,1>)
is a subrange relative to R(<X,1>).

X(I) = If I=1 THEN 1
ELSE IPF ccondition is true> THEN X(I-1)+1
ELSE X(I-1) ;

B(I) = A(X(I)) ;

Fig. 6.4 Example of indirect sublinear indexing
in subscript expression

A subrange relative to a major range may be the major range of some
other subranges. Therefore, the sublinear relationship between the
ranges may form a tree with the maximal major range at the root. We
merge major ranges and subranges in a bottom up order. By progressively
merging each subrange with the next level major range finally we will
obtain a 1loop which iterates in the maximal major range, and where all
of its subranges are nested inside the loop. Such merger of subranges
may not always be possible. For example, if type 4 subscript expression
is used in the distinguished dimensions of a component, the precedence
relationship will prevent us from scheduling this component into the
scope of a loop.
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merged into the scope of a loop, the major range will be used as the
loop range and the value of elements of the indirect indexing vector
will be checked to evaluate only the elements which are within the
subrange. An instance of the subrange is executed for each stepping up
by 1 of the indirect indexing vector. The computation of the indirect
index should precede the computation of any node within the subrange.
This introduces an additional precedence relationship.

When a set of components with a subrange and a major range are 1

We will treat subscript expressions of types 5, 6, and 7 similar to
types 1, 2, and 3, respectively, in checking the consistency of
subscript expressions of the distinguished dimensions as discussed in
section 6.2.1. If a check of the subscript expressions of the !
distinguished dimensions fails, i.e. some type 4 subscript expressions
are used or +the subscript expressions do not connect distinguished
dimensions of the components, we will treat these indirect subscript
expressions of type 5, 6, and 7 as type 4. If the check succeeds, we
will add edges in the Array Graph from the indirect indexing vector to
the nodes referencing it. This is similar to the addition of edges from
a range array to the nodes referencing the range array.

6.4 MEMORY EFFICIENCY

In some cases the same memory space may be shared by a number of
variables, thereby using memory storage more efficiently. Small savings
of memory space are not worth the cost of the analysis. Por example,
sharing memory space among few scalar variables does not save much
memory space. Our approach will concentrate on having elements of the
same array share the memory space. Since the range of each array
dimension is in general large and there are several dimensions, the
saving should Dbe considerable. It should also be noted that memory
space is statically allocated to the variables in the produced program.
Compared with dynamic memory allocation, static memory allocation has
the advantages of simplifying the program control in that there is no
need to allocate memory space at run time. This also facilitates
efficient random access of array elements.

Three alternative approaches to allocating memory are used:

1. Physical Dimension
If all the elements along some array dimension have different
memory spaces assigned to them, the wmemory space allocated is
proportional to the range of the array dimension. This method of
allocating memory will be referred to in the following as the
physical dimension.

2. Virtural Dimension
If all the elements along some array dimension share the same
memory space, a single element memory space serves for the entire
array dimension. We will refer to this method of allocation as
virtual dimension.

3. Window of width k
In some cases there is no need to store all the elements in an
array dimengsion in main memory. But an array reference of the form
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M I-k) makes it necessary to keep k+l array elements in main memory
at any moment. This type of memory allocation will be referred to
as window of width k+l.

For every array dimension we have to decide how the memory space is
to be allocated. The memory allocation decision is related to the
program execution sequence. Different program schedules may require
different memory allocation approaches. Por example, Pig. 6.5 shows two
different schedules for copying a file. The one which reads all the
recoxrds into the main memory then writes them out takes more memory
space than the other one which copies the file, record by record.

o (<A,1>)

Sch =1 Schedule-2

PO I

READ(A(I)) ;
END ; DO I ;

. READCA(I))
DO I ; B(I) = A(I) ;

B(I) = A(I) ; WRITE(B(I)) ;
END ; END 3
DO I ;

WRITZ(B(I)) ;

END ;

Pig. 6.5 Two schedules for copying a file

In the following we will show how the memory allocation decisions
are influenced by the program schedule and how the memory space
requirement for the program variables is evaluated.
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6.4.1 EVALUATION OF MEMORY USAGE

We will first consider in what units we should allocate memory
space. If a data structure or substructure is used as an argument of a
function or an operation, the whole structure must be passed between
program modules. The relative position of its constituent elements
becomes important to the computation. Therefore we can not allocate
memory space to its elements separately. On the other hand, economic
allocation of memory space requires that the unit be as small as
possible. We will require that all the operations operate on fields.
Operations on higher level structure must be therefore transformed into
operations on elementary data structure. The memory space will
therefore be allocated in the unit of fields.

The array dimensions above the unit data structure will be
considered as logical array dimensions for which thexre may not be
corresponding physical dimensions in the allocated memory space. One of
the three approaches mentioned above may be used to allocate memory
space. Since a virtual dimension requires 1less memory space than a
physical dimension, we would not physically allocate memory space to an
array dimension unless it is necessary based on the 1logic of the
specification. In the following we will discuss the conditions when an
array dimension has to be physical or window of width k.

The values of data structures may be produced by some program
activities such as reading an input file or evaluating an expression,
and consumed by some other activities such as writing an output file or
referencing an expression. If the production and consumption of the
elements along an array dimension does not proceed in a planned order
then all the array elements that are produced can not be discarded. All
must be stored simultaneously in main memory.

Given a program schedule we can check whether the program
activities which produce or consume the values along an array dimension
are all in one loop. If not, that array dimension should be a physical
dimension. If all the definitions and references of an array are in the
same loop, we should further check whether any type 2 or 3 subscript
expressions are used, because the occurrence of I-k type subscript
implies the necessity of keeping previous k elements while computing a
new array element. Thus the memory space for the array dimension should
be a window of width k+1l. It should be noted that if an array has its
distinguished dimension wusing either a finite window or a physical
dimension memory allocation scheme, all the loop for array dimensions
which are scheduled nested inside the current 1loop have to be of
physical dimensions. This ia illustrated in Pig. 6.6, where a two
dimensional array A is computed by a nested loop. Suppose the outer
loop iterates over the first dimension of A, i.e. <A,1>. The presence
of subscript expression I-1 requires a memory allocation schewme of
window of width two for <A,l> dimension. Since the array element of A
is computed row by row and the computation of array elements in one row
depends on the value of array elements in the previous row, therefore,
we will have to allocate two rows of memory space for array A.
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MmI; Array A
DOJ
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END ; ——— =] AL,
END 3
(b) Schedule (c) Yemcry requirement

Frig. 6.6 Effect of window dimension on the outer loop
over dimensions on the inner loops

After the memory allocation approach for every array dimension has
been determined, we can estimate the memory space requirement, which
will serve as a measure of the program quality. Given an N dimensional
array A, we can define the required memory space M for a node subscript
<A,i> as followsa,

M(<¢A,i>) = 1 if the ith dimension is virtual,

=k if using window of width k,

= upper bound of R(<A,i>) if physical.
If an array dimension is not physical, the upper bound of its range is
not used in calculating the wmemory requirement. The upper bound is
needed to estimate the memory space for a physical dimension. Sometimes
the range of an array dimension is specified by an assertion and the
upper bound is not known until run time. In that case we can only
assume the upper bound is infinity unless the user has specified an
upper bound of the range in the data description statements. The memory
space for array A is the product of M(<A,i>)’'s for all the dimensions of
A. The total memory requirement of a program is the sum of the wmemory
space used by every array variable.
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6.4.2 MEMORY PENALTY

Analysis of the loop scope leads to the selection of the memory
allocation scheme for the respective array dimension. The wmemory
penalty of a loop is defined as the memory cost of the arrays included
in the 1loop scope. The memory cost is the difference in memory
requirements between the ideal case (virtual dimension) and the memory
requirements if the 1loop is formed. 1In order to evaluate the memory
penalty of a loop, we first find all the nodes whose wmemory allocation
scheme is influenced by the construction of the considered loop.

whenever an Array Graph edge crosses the loop boundary, a source or
target node of the nodes in the 1loop will be outside of the loop.
Either one of the two nodes may require using the physical memory
allocation scheme. For example, if an edge from a data node to an
assertion node crosses the loop boundary, (i.e. the data node is in the
scope of the loop while the assertion node is outside), the data node is
defined in one loop and referenced outside it. Therefore, its array
dimensions have to be physical. Similarly if the edge crossing the loop
boundary is from an assertion node to a data node, the dimension of the
target node has to be physical,

Each node under consideration may fall into one of the following
three categories and the memory penalty can be computed accordingly.

1. A physical dimension for a distinguished dimension. This category is
recognized by the existence of an edge which crosses a loop boundary.
The memory requirement in ideal case is taken as that of a virtual
dimension. The memory requirement for a loop is computed by
multiplying the upper bounds of all the unscheduled dimensions and
the dimension that is conasidered for a loop. The difference is the
penalty of the loop for this array.

2. A virtual dimension for the distinguished dimension. In this case
the 1loop boundary ia not crossed by edges and all the subscript
expressions on its distinguished dimension are type 1 subscripts.
The memory penalty for a virtual dimension should be zero.

3. A window of width k+l1 for the distinguished dimension. Similar to
the virtual dimension category. No edges would cross the loop
boundary. However subscript expressions of the form I-k on its
distinguished dimension are allowed. The other unscheduled
dimensions are considered to be phyaical dimensions. The penalty is
computed similar to the first category.

Example Consider the memory penalty of a loop shown in Fig. 6.7, The
ranges of subscripts I and J are 10 and 20 respectively, and every
data element occupies one unit of memory space. The memory
requirements in ideal cases for node A, B, C, and D are 1, 1, 1,
and 1 respectively. The memory requirements if the loop is formed
will be 10, 40, 1, and 200 respectively. Arrays A and D have to be
physical and the first dimension of array B needs a window of width
2. The memory penalty for this loop is the difference of 251 and
4, i.e. 247 units of memory space.
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Pig. 6.7 Example of computing memory penalty

Information about the unscheduled dimensions may be used to compute
the penalty more accurately. For example, some array dimensions must be
physical dimensions because of the use of type 4 subscript expressions.
During the process of scheduling, we can accumulate such information to
speed up the memory penalty evaluations.

6.5 A HEURISTIC APPROACH TO MEMORY-EFFICIENT SCHEDULING

In general, there is a large number of schedules which can realize
the computation of a program specification. The schedule with the
minimal total memory requirement will be called an absolute optimal
Progxam. In principle it should be possible to enumerate all the
possible schedules for an Array Graph, as there is a finite number of
them, and then evaluate the memory requirement of each schedule. We
would thus be able to find the absolute optimal schedule. Por several
reasons this method 1is not practical. The program events being
scheduled are 1low level activities represented by nodes, i.e,
statements and variables, and an Array Graph may easily consists of
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several hundred or even thousands of nodes. Also the nodes in the Array
Graph may be multi-dimensional and the number of combinations of
posgible nested loops is very large. Purther, the constraints on the
feasible schedules are complicated. Thus enumerating all the feasible
schedules would be prohibitive, and an exhaustive examination of all the
feasible schedules to find the absolute optimum is not acceptable.

Instead we have adopted the heuristic approach as follows. Given
an Array Graph as input, we first construct an acyclic component graph
with the MSCCs in the Array Graph as nodes. Our objective is to
repeatedly merge components in the component graph into blocks which
correspond to loop scopes. This process will be applied repeatedly to
the 1levels of nested loops. On the first application it will produce
the outer level loops. The Dblocks are formed by merging as wmany
components as possible which have the same or related ranges. The
process is repeated for each lower level of the nested loops, based on
the subgraph that correspcnds to the higher level loop. This process
may not result in the absolute optimal program as the outer level loop
scopes are determined without the analysis of the effects of inner loop
structures on the use of memory space. However considering the effect
of inner loops on memory usage is a complex process and it represents a
large increase in the number of alternatives that must be evaluated.
The scope of the major loops in a program are maximized in our proposed
approach and there is no, or little, effect of inner 1loops on memory
usage. Thus this heuristic approach represents a good compromise
between the amount of analysis involved and the payoff in reducing

memory usage.

On each level of loops, the scheduling process consists of a <trial
scheduling for every range set in the corresponding Component Graph. A
loop for the range R will enclose only the components which have
dimensions in the range set associated with range R. The range sets
related to R (through sublinear indirect indexes) will later be merged
with the blocks of range R. The maximum loop scope for every range R is
the range set of R.

The trial scheduling of each range set consists of finding the
clogure of the range set and an attempt to schedule nodes in the set
which may be within the scope of the respective loop. Wwe first merge
into a block the components in <the range set which do not have any
predecessors in the closure of the range set. Progressively we will
merge into the block other components which depend on those in the
block, as far as possible. The merger involves selection of a
distinguished dimension in each component, as described above. At the
end we evaluate the memory penalty of the loop scope obtained by the
trial scheduling. The loop with the smallest penalty will be scheduled
finally. This process will be repeated with the unscheduled portion of
the graph until all the components in the Component Graph are scheduled.

There are many possible orders for merging components in the
closure of a range set, to form the scope of a loop. For example, we
may arbitrarily pick a component in the middle of the Component Graph
and merge it with its neighbor components or start with a component on
which no other components depend and merge the components backward.
However, considering all the possible orders of mergers will further
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increase the number of alternatives that must be evaluated. The order
of wergers is unimportant in the case where the whole range set can be
scheduled in one 1loop, i.e. it is the case that all the array
dimensions may become virtual. No matter in what order we merge the
components, we will finally get the same loop scope. Again, we selectad
the forward merging of the Component Graph as a good compromise betweer:
quality of the schedule and the amount of analysis.

It is necessary next to order the blocks associated with outside
level loops in an execution sequence order. The memory cost will be the
sams for any order that maintains the precedence relations between these
blocks. We choose to order the blocks by topological sorting. For
every outer level loop we mark the distinguished dimensions of the
blocks as scheduled.

We apply the scheduling algorithm recursively to each inner nested
level 1loop by considering only the subgraph which contains the nodes in
one loop scope. The resulting schedule will be the body of the outer

level loop.

We will illustrate this process with an example of scheduling the
Array Graph shown in Pig. 6.8. Every node is a MSCC by itself, and the
initial Component Graph is in fact the Array Graph. The candidate
ranges axe R(<A,l>) and R(<B,1>). Assume that the repetition numbers
are S00 and 200, respectively. The range set of R(<A,1l>) contains three
nodes: A, a1, and C. The closure of (A, al, C} is itself. If we
schedule the whole set into one loop, the penalty will be making array B
physical. on the other hand, the trial scheduling of the range set of
R(<B,1>) contains two nodes: B and al. If this set is scehduled in one
loop, the penalty will be making both array A and C physical., We will
select the loop of R(<«B,1l>) since the size of array B is greater than
the sum of the sizes of array A and C. We mark the component B and al
as scheduled. There are two components left to be scheduled. We have
no alternative but to schedule each of them in a separate loop. The
regulting schedule is shown in Fig. 6.8(b).
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Fig. 6.8(a) An Array Graph to be scheduled

DO I ;
END 3
DO J
al | (I
END :
DO I
END 3

Fig. 6.8(b) The outer level loop structure
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6.6 THE SCHEDULING ALGORITHM

The scheduling algorithm, called SCHEDULE, is documented below.
The overall process is illustrated in Pig. 6.9. The 80olid lines show
procedure calls and the dashed lines show passing of parameters and
returns. The SCHEDULE process starts with construction of a reduced
form of the Array Graph, which will be modified in the course of
scheduling and is also easier to manipulate. It then calls a recursive
procedure SCHEDULE_GRAPH. This procedure accepts an Array Graph as
input and returns a schedule as output. SCHEDULE_GRAPH calls on a
number of procedures to perform its tasks. It calls first the procedure
STRONG to construct a Component Graph out of the reduced Array Graph (or
subgraphs of it in recursive calls).

Next, the major iteration in SCHEDULE_GRAPH schedules the outer
loop scopes. This iteration repeats until all the components in the
Component Graph have been scheduled. This major iteration 1loop finds
first all the candidate ranges.

Next there is a nested iteration for trial scheduling of all the
candidates ranges. It consists of calls to four procedures. Procedure
INDRSUB is called first to find the range sets of each candidate range.
If a candidate range has some subranges related to it, the sets of the
subranges will also be included in the major range set. CLOSURE is then
called to get the subgraph for the closure of the range set. Then
MAX_SCHED is called to do a trial scheduling. MAX_SCHED accepts as
input a subgraph which consists of the closure of a respective range set
and returns as output a loop scope which contains components in the
closure of the range set that have been trial scheduled. The trial
scheduling consists of repeated mergers into a loop scope of the
components in the closure of the range set which do not depend on any
other components. As a component is merged into the loop scope, it is
deleted from the subgraph of closure of the range set. The merger
repeats until no more components can be scheduled. Procedure EVALUATE
is then called to compute the memory penalty associated with the loop
scope.

At the end of the nested iterations for all the candidate ranges,
SCHEDULE_GRAPH selects the loop scope with the smallest penalty. It
will eventually form a part of the final schedule. The components in
the selected 1loop scope are first merged into a single component and
then marked off in the Component Graph.

The above major iteration loop is repeated, as noted above, until
the Component Graph is empty. The outer loop scopes are thus all found.
The corresponding components are topologically sorted. It is necessary
then to find the nested loop scopes, if any, for each outer loop scope
subgraph. As SCHEDULE _GRAPH selects the next component in the
topological sorting, it calls the procedure EXTRACT to extract these
subgraphs, which correspond to the selected loop scupes. Each of these
subgraphs must be internally scheduled. EXTRACT calls SCHEDULE_GRAPH
recursively, to achedule each of the subgraphs. A component that is not
within a loop scope needs not be further internally scheduled.
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Fig. 6.9 Various components of the scheduling
algorithm

Global Data Structure for SCHEDULE
The reduced form Array Graph, constructed by the SCHEDULE procedure,
consists of a list of elements of type GNODE, with the following fields:
NXT_GNODE - A pointer to the next element in the 1list. (At the
generation of the reduced form Array Graph all the GNODEs

- 127 -

id



PR SO Y N

form a single list. During the process separate 1lists
will link the GNODEs in each MSCC.)

NODE_ID — The node number of the element in the dictionary.
16 o A - A pointer to a list of edges connecting this element to
its successors. Initially this is identical to the

SUCC_LIST list. As the process proceeds, some of the
edges are removed from this list.
The components in the reduced Array Graph are found by the procedure
STRONG. STRONG modifies the 1list connecting the nodes in the Array
Graph to form separate lists for each MSCC.

The initial number of components in a Component Graph is denoted as
COMP_CNT. Every component is assigned a component number from one to
COMP_CNT. The component graph is defined in the following four wvectors.
1) NODELST(COMP_CNT). Points to a list of GNODE elements in the Array

Graph which belong to the respective component.

2) ACOMP(COMP_CNT). A Dboolean value showing whether the component
exists in the component graph or not. In the course of the process,
when a component is merged into some other component, its
corresponding ACOMP bit is reset.

3) INCMP(COMP_CNT). A boolean value showing whether a component has
been scheduled or not. Oonce a component has been scheduled, its
corresponding bit will be reset. Thereby it will not be scheduled
again.

4) CEDGES(COMP_CNT). Points to a list of edges which originate from the
component and end at its successor components. Every element in the
list has two fields. One field contains the component number of its
successor and the other is a pointer which points to the next edge.

A subgraph of the Component Graph can be represented by a bit vector

like INCMP. If a component is in the subgraph, its corresponding bit

will be set. Otherxrwise, the corresponding bit will be reset. In the
following, all the subgraphs of the Component Graph will use this
representation.

The finally generated program schedule is structured as a 1list of
schedule elements. There are four types of schedule elements:
node—element, for-element, simul-element, and cond—element. A
node—element corresponds to a primitive program event in the generated
program such as the computation of an assertion, opening a file, reading
a record. A for—element corresponds to a loop in the program. The body
of the loop is also represented by a schedule list and pointed to from
the for-element. Similarly, a simul-element corresponds to an iterative
computation for a simultaneous block and points to a list in the body of
the iteration. The cond-element is used to represent a conditionally
executed block which corresponds to the scope of a subrange. It will
point to the respective body list.

1) A node—element is a structure NEIMNT, with the following fields:

NXT_NLMN - Pointer to the next element in the schedule.

NIMN_TYPE - Equal to 1, denoting this is a node—element.

NODES = The node number. N
2) A for-element is a structure PELMNT, with the following fields:

NXT_FIMN - Pointer to the next element in the schedule.

FIMN_TYPE - Equal to 2, denoting this is a for-element.

EIMNT_LIST- Pointer to a program schedule which is the body of <the
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loop.
POR_NAME - The dictionary node number of the loop variable.
FOR_RANGE — The dictionary node number where the range of the loop
variable is specified.

3) A simul-element is a structure SELMNT which is used for a
simultaneous equation block. It has the same structure as PELMNT
with FPLMN_TYPE equal to 3.

4) A cond-element is used for a conditionally executed block. It has a
similar data structure as PELMNT except that the field FLMN_TYPE is
always equal to 4.

Algorithm 6.1 SCHEDULE_GRAPH

Input.
G: A pointer to the reduced Array Graph which is represented by a
GNODE list.
L: The nesting level L.
Output.

A program schedule for the input graph G.
Data Structures.

GSIZE(COMP_CNT): The number of nodes in a component.

MINPREE(COMP_CNT): The minimum of the number of unscheduled
dimensions associated with any node in a component.

SUBRNGR( SRNG_SET,SRNG_SET ): A boolean matrix which shows the
subrange relationships. If the jth range set is a subrange of
the ith range set, then SUBRNGR(i,j) will be set to °'1'B.

RNG_VEC(SRNG_SET): For each range set, it indicates the node number
of the indirect indexing vector which reduces the major range

. into this range set, if any. :

1. Call procedure STRONG to find out all the MSCCs in the Array Graph G
and then construct a Component Graph with each MSCC as a node.
Initially all the components are put in the Component Graph and the
corresponding ACOMP and INCMP bits are set to *'1'B.

2. Por each component, compute the corresponding element of the vector
GSIZE, which is the number of nodes in the component, and the
corresponding element in the vector MINFREE, which is the minimum of
the number of unscheduled dimensions associated with any node in the
component. Also compute the SUBRNGR matrix by scanning the indirect
subscript expressions used in the assertions, and the vector RNG_VEC
which gives for each range set number the node number of the
indirect subscript, if any.

3. If a component has MINFREE=0, it is not to be scheduled in any loop.
We will mark it off from the Component Graph by setting the
corresponding INCMP bit to '0'B. This component will be a single
component block.

4. Repeat step 5 to 11 to schedule all the outer level loops, until all
components in the Component Graph have been marked off.

5. Select the ranges of node dimensions which are not yet scheduled and
where the respective range does not have real arguments of
unscheduled subscripts. The selected ranges can be scheduled in the
outer 1level loops. The ranges of those node dimensions will be the
candidate ranges.

6. Repeat step 7 to 10 for each range candidate. Steps 7 to 10 consist
of a trial scheduling of a range candidate Ri.

7. Call procedure INDRSUB. This procedure computes a subgraph S which
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contains all the components which are in the range set of Ri or the
range set of a subrange of Ri. S is represented as a bit map
similar to INCMP,

8. Call procedure CLOSURE to find the subgraph S‘'=closure(S).

9. Call procedure MAX_SCHED with subgraph S' and range candidate Ri as
input parameters to form a loop scope Li which contains a subgraph
of S'. Li is represented as a bit map similar to INCMP.

10. Call procedure EVALUATE to compute the memory penalty of Li.

11. Choose the loop Lj with the smallest memory penalty. Merge all <the
components in Lj into one component, say Ck, by modifying the list
pointed to by the NODELST of Ck to include all the GNODEs in the
other merged components. ACOMP, INCMP, and CEDGES vectors are also
wodified to reflect the new component. Then set INCMP(k) to 'O'B to
wmark the whole loop scope off from the Component Graph.

12. Do a topological sort over the resulting components of the component
graph where each component corresponds to either a single node or a
loop scope in the schedule to be returned.

13. Schedule each component separately. If there is no distinguished
dimension for the nodes in a merged component, a node—element will
be formed for the component. Otherwise, call the procedure EXTRACT
to form a for-element for the component.

Algorithm 6.2 STRONG
Input.

G: A pointer to an Array Graph.
Output.

NODELST: A list of components which are the MSCCs of the input
graph. Every component ia represented by a list of GNODE
elements which belong to the component.

1. Clear the stack, the component count, the 1list of components

NODELST, and the variable COUNT. PFor each node v in the graph G set

DFNUMBER(V) = O
2. For each node v in the graph G such that DFNUMBER(v)=0 call SEARCH(v)
to add the components reachable from v to the component list NODELST.
3. Return the component list as the result.

Algorithm 6.3 SEARCH
Input.
v: A node in a graph which is not examined yet.
Output.
The NODELST for all the MSCCs reachable from node v.
1. Set COUNT to COUNT+1l and DPNUMBER(Vv), LOWLINK(v) to COUNT. Push v

on the stack.

2. Repeat the following substeps for each node w, a Adirect descendant
of v.
2.1 If DFNUMBER(w )=0, call SEARCH(wW) and then let

LOWLINK( v )=min( LOWLINK(V), LOWLINK(w)).
2.2. Else, if DPFNUMBER(W)>0 and w is on the stack, then let
LOWLINK( v )=min( DPNUMBER(W ), LOWLINK(V)).

3. If LOWLINK(V)<DFNUMBER(V) then return.

4, Elgse, LOWLINK(v)=DFNUMBER(v). Node v is a root of a strongly
connected component. All the elements (above and including v) on
the stack are successively popped off the stack and linked into a
list - a subgraph which is defined as a component. This component
is placed on the top of a list of components pointed to Dby the
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variable COMP_LIST. In addition a unique component number is
assigned to each node w in the current component.

Algorithm 6.4 INDRSUB(RANGE,GI)
Input.

RANGE: A candidate range (a range set number).

Output.

9.

GI: A subgraph which contains all the components in the range set of
RANGE and the components in the range sets of the subranges of
RANGE which can be included in the loop scope of RANGE.

Construct a subgraph GI which contains all the components in the

Component Graph which have an unscheduled dimension with the range

RANGE. GI is represented in a bit vector similar to INCMP. Set

GI(k)='1'B 1if the kth component is in the range set of RANGE. The

edges from these nodes are given in CEDGES.

If RANGE has no subranges, return GI as the result. This

information stored previously in SUBRNGR matrix, which shows the

subrange relationships.

Otherwise, repeat step S to 8 for each immediate subrange RNGIK of

RANGE .

Call INDRSUB recursively with RNGIK as input parameter and GIK as

the output parameter. GIK will contain the components which can be

scheduled in the loop of RNGIK.

Call procedure CLOSURE to compute the closure of GIK in the

Component Graph. Then put the closure into GIK.

Set the union of GI and GIK into GI. (Note that this may be

reversed in step 8.)

Call MAX_SCHED procedure to do a trial scheduling for subgraph GI.

If the subgrpah GI can not be scheduled completely, then at least

one node, and possibly wmore, will have to be physical. Also the

range specification of the subrange may become necessary. Therefore
we decided that in this case it is not worthwhile to merge the range
get of RNGIK with the range set of RANGE and GIK is taken out of GI.

Return GI as the result.

Algorithm 6.5 CLOSURE(COMPS)
Input.

COMPS(COMP_CNT): A bit vector with a set of components marked by
'‘1'B. Other components are marked by 'O'B.
The algorithm also uses the global data structures (ACOMP and
CEDGES ).

Output.

1.

3‘
‘.

CCOMPS: A bit vector with the closure of the set of components in
the input marked by '1'B. Other components are marked by °'0O'B.

Create a bit vector NACOMP (size COMP_CNT) with the components in

ACOMP marked except the components in COMPS are merged into one

component. This also involves creating a vector NCEDGES similar to

CEDGES except reflecting the merger of the components in COMPS.

Find all the MSCCs in the new component graph (consisting of the new

vectors NACOMP and NCEDGES).

Locate the MSCC which includes the components in COMPS.

Construct CCOMPS, a bit vector (size COMP_CNT), with all the

compornients in the MSCC marked. This 1is the closure set of the

input,
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Algorithm 6.6 MAX_SCHED

Input.

INCMP: A bit vector where a set of yet unscheduled components is
marked by 'l1'B. Other scheduled components have a value ‘'0°B.
Note that these unscheduled components are the basic MSCCs found
by STRONG. The function of MAX_SCHED is to schedule as many of
the marked components as possible.

MERGCMP: A bit vector with the closure of a range set marked by
'1'B.

RANGE: The candidate range (range set number).

Output.

COMPS: A bit vector with the components, which have been trial
scheduled in a loop, wmarked by '1°B,

POSITION: A vector (size is DICTIND- the number of nodes in the
dictionary). The position in each scheduled node of the
distinguished dimensions that corresponds to the loop parameter.

1. Initialize the POSITION entries to 0.

2. Por each component i, if INCMP(i)='1'B (i.e. it is not yet
scheduled), MERGCMP(i)='l1'B (i.e. it is in the closure set), then
search the CEDGES vector and set PREDCNT(i) to number of
predecessors in MERGCMP. If PREDCNT(i)=0 then put component i into
a list of candidates to be trial scheduled.

3. Repeat steps 4 to 8 until the list (referred to in step 2) is empty.
The function of steps 4 to 8 is to merge one component from the list
into the loop scope represented by COMPS.

4., Remove a component, say Ci, from the 1list. Search through the
NODELST of Ci, if there exiats a node v with POSITION(v)»O0 (i.e.
its distinguished dimension has been determined in a previous
iteration), then set PIRSTNODE=v, and go to step 7.

5. Else, arbitrarily pick any node of the component. Let it be denoted
by v. Set PIRSTNODE=v,

6. Seaxrch the subscript list of node v until finding a dimension j that
has not been scheduled in a loop scope (i.e. IDWITH=0) and its
range is the same as the RANGE parameter. If found, then
POSITION(V)=j, If none found then this component should not be
scheduled in the loop scope. Therefore go to next iteration (i.e.
end of step 9).

7. Propagate the distinguished dimension of node v repeatly until all
the nodes in Ci have their distinguished dimensions defined. During
each propagation step:

7.1 Propagate the distinguished dimension forward along the edges
originated from node v to all the nodes at the terminating end
of the edges.

7.2 If the node to which a distinguished dimension is propagated
does not belong to Ci then do not further propagating the
distinguished dimension from this node forwards.

7.3 If propagation is not possible to any node in Ci because of type

4 subscript expression then the current iteration may be

terminated, i.e. go to end of step 9.

The current component can be merged into the loop scope. Set

CcCoMPS(i)='1'B.

9. Search through the list pointed by CEDGES(i). FPor every edge
from Ci to Ck set PREDCNT(X)=PREDCNT(k)-1l. If PREDCNT(K)=0,
INCMP(k)=‘1'B, and MERGCMP(k)='1'B, then put Cx into candidate
list.

B I LT Turwms VN YR
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Algorithm 6.7 EVALUATE

Function: Given a loop scope, compute the resulting penalty in use of
memory. This procedure is called after each trial schedule for
a range candidate and again after the final schedule was
selected.

Input.

COMPS: A bit vector of size COMP_CNT with the bits correspondning to
components in a loop scope equal to °‘l°'B.

EVAL_SET: A bit denoting whether EVALUATE is called to evaluate
memory penalty of a trial schedule or for the selected schedule,
in which case the selected memory allocations are recorded in
STOTYP.

Output.
PENALTY: The memory penalty of the loop scope, in bytes.
Data structure.

SRCPHY, TGTPHY: When an edge in an Array Graph crosses a boundary of
a loop scope then, depending on the type of the edge, the memory
allocation for the data node at the origin or terminating ends
of the edge may have to be physical. The SRCPHY bit vector
denotes for each type of edge ( there are 28 types) whether the
memory allocated to the node at the origin end of the edge (the
source node) must be physical. Similarly, the TGIPHY vector
refers to the node at the terminating end of the edge (the
target node).

MRAL: The memory requirement, in bytes, after the loop is formed.

MRIC: The memory requirement in the ideal case.

STOTYP: A field in the data structure LOCAL_SUB. For a virtual
dimension, STOTYP=0. FPor a window of width k+1 dimension,
STOTYP=k+1l. For a physical dimension with upper bound u,
STOTYP=—u,

1. Repeat steps 2 to 6 for every edge in the Array Graph. Each
iteration computes the effect of the edge on use of memory.

2. If the source and the target nodes of the edge are in COMPS, this is
an internal edge, then go to step 6 to examine the subscript
expression of the edge to determine its effect on use of memory.

3. If both the source and the target nodes of the edge are not in
COMPS, then this edge has no effect on memory useage. Go to end of
iteration, at end of step 6.

4, If none of the above then this edge crosses the loop boundary. In
this case, if SRCPHY(EDGE_TYPE)=1, then the distinguished dimension
of the source node must be physical., If TGTPHY(EDGE_TYPE)=]l, then
the distinguished dimension of the target node must be physical.
The respective node numbers and the requirements for physical memory
allocation are stored in a list. Also in this case go to the end of
the iteration (at end of step 5).

5. If the subscript expression is of ¢the form I-k and
SRCPHY( EDGE_TYPE )=1, then the memorxy allocation for the
distinguished dimension of the source node must be a window of width
k+1l. This is also stored in the list,

6. PENALTY is initialized to gero.

7. Repeat steps 8 to 11 for every node in the above list. Theese nodes
have either a physical or window of width k+l memory allocation. An
iteration computes the memory requirement for a respective node.

8. In the case of a physical distinguished dimension, compute MRAL, as
the product of all the ranges of the unscheduled node subscripts.
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Inthe case of a window of width k+l for the distinguished
dimension, compute MRAL as the product of k+1 and the ranges of the
other unscheduled node subscripts.

9. To compute MRIC it is necessary to scan each unscheduled node
subscript. If its storage type STOTYP is O, then the ideal memory
requirement for this dimension is one. If STOTYP<«O, the memory
allocation has previously been determined as physical, then the
ideal memory requirement is -STOTYP (u). MRIC is the product of
these ideal ranges.

10. The penalty for the array node ND_PENALTY= (MRAL-MRIC)*(length of
node element in bytes).

11. PENAITY=PENALTY+ND_PENALTY.

12. If EVAL_SET='1'B then if the distinguished dimension is physical
then STOTYP in every unscheduled dimension is equal to the wminus of
its range, if the distinguished dimension is a window of width k+1
then STOTYP of the distinguished dimension is k+1 and for the other
unscheduled dimensions STOTYP is the minus of their respective
range.

Algorithm 6.8 EXTRACT

Punction: To obtain the for-element for a loop, including the schedule
elements for the body of the loop scope.

Input.

SUBGRAPH: A pointer to a reduced Array Graph of the component
scheduled into one loop scope.

SVPOSITION: A vector with an element for every node in the SUBGRAPH.
Each element has the value of the dimension number of the
distinguished dimension of the respective node.

L + The nesting level.

Output.
A for—-element which is the schedule of the input graph.

1. Allocate a for-element. Set FOR NAME to loop parameter name and
FOR_RANGE to the range set number of the loop parameter.

2., If the current loop range has some immediate subranges, then call
procedure COND_GRAPH and upon return go to step 7. COND_GRAPH takes
over all further scheduling of a body of a 1loop which contains
conditionally executable nodes due to use of indirect subscripting.

3, Delete all the edges from the graph with distinguished dimension
subscript expressions of type 2 or 3. The precedence expressed by
these edges is assured by the order of the iterations.

4, Set IDWITH of the distinguished dimension of all the nodes in the
subgraph to L, the nesting level of the current loop.

5. Call SCHEDULE_GRAPH, with SUBGRAPH and L+l as the parameters, to get
the schedule of the resulting graph.

6. Set EIMNT LIST in the for-element structure to point to the schedule
returned from step 5.

7. Return the for-element as output.

- s . " . nm o 4
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Algorithm 6.9 COND_GRAPH(TOP_RANGE,GRAPH)
Punction : To obtain the schedule elements of the body of a loop scope,
which includes cond—-elements.
Input.
TOP_RANGE: The range set number of the highest level major range in
the SGRAPH.
SGRAPH: A graph to ba scheduled within an iteration block of +the
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range TOP_RANGE.

Output. A schedule for SGRAPH.

1'

10.
11.
12'
13.

14.

Scan all edges in SGRAPH. If an edge has a subscript expression in
the distinguished Aimension of types 2, 3, 6, or 7, and either the
source or the target nodes have the TOP_RANGE range, then delete
this edge from SGRAPH.

If node X is the indirect indexing vector served to reduce the range
TOP_RANGE to a subrange RNGIK, then draw an edge from X to all the
nodes in the range set of RNGIK.

Call procedure STRONG to form a Component Graph for SGRAPH,
consisting of ACOMP and INCMP, CEDGES, and NODELST. ACOMP and INCMP
are bit vectors ( the size is the number of MSCC found by STRONG).
These vectors are all of the value °'l'B,

Por every subrange RNGIK of TOP_RANGE, merge all the components in
the range sets of RNGIK or its direct and indirect subranges into
one component. Set the INCMP vector elements of the merged
components to '0'B.

Repeat steps 6 to 9 until all the elements in INCMP are °‘O'B. Each
iteration merges a group of components with TOP_RANGE range.

Call CLOSURE with INCMP to obtain the closure set MERGE_CMP.

CALL MAX_SCHED with INCMP, MERGE_CMP, and TOP_RANGE. It returns
CCoMPS .

Mexrge the components in CCOMPS into one component, updating NODELST,
CEDGES, ACOMP, and INCMP.

Set the element of INCMP corresponding to the merged schedule to
'0*'B.

Repeat steps 12 to 13 for the components in ACOMP.

Select the next component in ACOMP in a topologically sorted order.
Let this component be COMPI.

Let RNGIK be the range of the component COHPI. If RNGIK=TOP_RANGE,
then mark the distinguished dimension of each node in the component
as scheduled and call procedure SCHEDULE_GRAPH to get a schedule for
this component. Go to step 1l4.

Othexwise, allocate a cond-element to this component. call
procedure COND_GRAPH recursively with RNGIK and COMPI as the input
parameters to get a schedule for the conditional element.

Return the schedule elements obtained as the £final schedule of
SGRAPH. Note that the order of the schedule elements was determined
by the selection of components in a topologically sorted order in
step 11. The schedule elements are obtained either in step 12 orx
13, depending on whether they are cond-elements or other elements

respectively.
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CODE GENERATION

7.1 OVERVIEW OF THE CODE GENERATION PROCESS

Code Generation is the last phase of the processor. It uses the
data structure generated in Array Graph construction, specification
analysis, and program scheduling. As shown in Fig. 7.1 the code
generation process accepts two inputs: the program schedule created in
the scheduling phase and attribute tables produced in the analysis
phase. Recall that the program schedule is an ordered sequence of
schedule elements described in section 6.6. The nodes referenced in
schedule elements can be found in the dictionary. The attributes of the
respective nodes are in the dictionary. They are described in the
section 4.2.1. The output is a complete PL/I program ready for
compilation. The executable PL/I code is written out to the "PL1EX"
file. The PL/I "ON" conditions are written to the "PLI1ON" file and the

PL/I code for declaring the object data items is writtemn to a "PL1DCL"
file.

Program
Schedule ~«

\\

PL/I
CODE GEMERATION [ = = =3program

Attribute - -
Tables

Pig. 7.1 Overview of the Code Generation Phase

Pig. 7.2 shows the overall organization of the code generation
process, consisting of the main procedure CODEGEN which in turn calls on
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the other procedures to perform certain tasks. The PL/I execution code
is gensrated by the GENERATE procedure which examines the elements of
the schedule one at a time, and invokes the procedures that are
indicated Dby types of program events. The GPL1DCL procedure generates
the data declarations. GENERATE calls GEN_NODE to generate statement
for node elements of the schedule. The GEN_NODE calls on GENIOCD for
input-output operations and on GENASSR for assertions. GENERATE also
calls GENDO and GENEND for generating iteration control structures for
for-elements, and on COND_BLK and COND_END for generating conditional
block statements for cond-elements. These procedures are briefly
reviewed in section 7.2. They are described in greater detail together
with other auxiliary tasks in the subsequent sections that follow.

Program

-

Schedule ~ -

PL/I

CODEGEN - ~ = = Program
Attribute -

-

Tables ~

L L

GENERATE GPL1TCL

L N N

GENTC CENEND
CCND_BL GE_CE COND_END

GENIOCD J( ;l CRMASSR

Files used:

PLIEX
PLION
PLIDCL

Pig. 7.2 Components of Generating PL/I Code
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7.2 THE MAJOR PROCEDURES FOR CODE GENERATION
7.2.1 CODEGEN — THE MAIN PROCEDURE

CODEGEN starts with opening the output files PL1EX, PL1ON, and
PL1DCL. It next generates code that will handle program errors. Most
of these errors are due to input data errors discovered by data type
conversions in the program. The user can also define additional error
conditions. The statements written to the PL1EX file are as follows:

ALLOCATE ERROR, ACC_ERROR ;
ACC_ERROR = ‘0O'B ;
ALLOCATE SERR_LAB ;
SERR_LAB = END_PROGRAM ;
The declarations written to the PL1DCL file are as follows:
DCL (ERROR, ACC_ERR, NOT_DONE) CTL BIT(1) ;
DCL SERR_LAB LABEL CTL ;
Finally the ON condition code is sent to the PL1ON file as follows:
ON ERROR
BEGIN
/* write erronous input record to ERRORF file */
WRITE FILE(ERRORF) FROM( SERROR_BUF) ;

ERROR = °'1°'B ; /* set error flag */

GO TO SERR_LAB ; /* go to end of loop where */
END ; /* error was detected */
ERROR_RESTART:

CODEGEN next passes the entire program schedule to GENERATE, which
will generate the portions of the program for the schedule elements.
When this is completed CODEGEN passes the attribute tables to GPLIDCL to
generate data declarations. Pinally CODEGEN calls on MERGEPLl1 to wmerge
the three output files.

7.2.2 GENERATE - INTERPRETING SCHEDULE ELEMENTS

This recursive procedure scans the schedule given by the 1list of
schedule elements, LIST, for a loop nesting level LEVEL. To start with,
CODEGEN passes the whole schedule at 1level O. In subsequent calls
GENERATE will receive a schedule of a loop scope at each nesting level.
GENERATE calls lower level procedures to process the different types of
schedule elements as follows:

1. Scan each element of the list LIST. Por each element perform steps 2
to 4.
2. If the element is a node—element call GEN_NODE which will generate
the code for the schedule element.
3. If the element is a for-element do the following:
3.1 Call GENDO to produce a code for opening a loop.
3,2 Call GENERATE recursively with the list of the elements within
the loop's scope and level = LEVEL+1.
3.3 Call GENEND to generate the termination of the loop.
4, If the element is a cond-element do the following:
4.1 Call COND_BLK to produce the code for opening a conditional
block.
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4.2 Call GENERATE recursively with the list of the elements within
the condition block and level = LEVEL.

4.3 Call COND_END to generate the termination of the conditional
block.

- B -

7.2.3 GENDO - TO INITIATE THE SCOPE OF ITERATIONS

This procedure produces the code for a control statement initiating
an iteration loop. The loop variable name FORNAME and the termination
criterion are taken from the fields POR NAME and FOR RANGE in the
for—-element being scanned.

: The following instructions are intended for recovery from a program
B error. They always precede each loop control statement:
L ALIOCATE ERROR, ACC_ERROR ;
) /* reset accumulative error flag */
L ACC_ERROR = '0'B ;
1 ALLOCATE SERR_LAB ;

SERR_LAB = LOOP_ENDC ;
The "c" following LOOP_END is a unique number assigned to the loop. The
purpose of these statements is to ensure that an error occurring within
the loop scope will cause the control be directed to LOOP_ENDc which is
a label immediately preceeding the end of the loop.

3 The DO-statement itself is constructed next. Two basic forms for
] the loop control statements are used:
4+ 1)
DO name = 1 TO upper [ WHILE (condition) ] ;
X 2)
name = 0 ;
1 DO WHILE (condition) ;
. name = name+l ;
*name" is the loop variable. "condition"” is the termination condition.

If the termination criterion given is that of a fixed upper limit
or given through a SIZE variable, the first form is used and "upper" is
either a constant number or a variable of the form SIZESX.

If the range is specified by an END.X control variable, the second
form of loop control is used. In this case we use NOT_DONE in the
condition and the following statements are generated before the
beginning of the loop:

ALLOCATE NOT_DONE ;

NOT_DONE = ‘'1°'B ;
NOT_DONE will be reset to '0'B whenaver the appropriate END.X variable
is set to 'true’,

If there is an end-of-file condition associated with tiie iteration,
either as the main termination condition, or because this is an
iteration on an input record or group above the record level which are
last in their peer group, we add:

~ENDPILESfile
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to the condition “condition”.

7.2.4 GENEND - TO TERMINATE THE SCOPE OF ITERATIONS

This procedure produces the code needed at the end of the 1loop
scope. Since at times, we use k+l locations to store a window of size
k+1l of an array, it is necessary on each iteration to shift the window
by one element position. This is done at the end of the iteration. The
size of respective window is originally stored in STOTYP of the node
subscript of each array node. GENERATE passes the node numbers of
arrays using window dimensions in a list called PREDLIST to GEN_END.
Based on this liast GEN_END generates statements to shift the window by
one element position. The actual range declared for a window dimension
is k+1. In each iteration we compute (or read) A(..., k+l, ...) and may
refer to the previous element as A(..., k, ...). When an iteration is
completed we transfer A(..., I+l,...) to A(..., I,...) for I from 1 to
k.

After producing a sequence of these shifting operations we produce

the label:
LOOP_ENDc: ;
where "c" is the unique count associated with the current loop. If the
termination criterion for the loop was through an END.X control variable
we also produce the code:
' IP END.X THEN NOT DONE = 'O'B ;

This has to be done at the end of the loop since the value of END.X at a
given iteration determines whether this iteration will be the last.

After this we produce the following statements:
STMP_ERROR = ACC_ERROR ;
FREE ERROR, ACC_ERROR ;
FREE SERR_LAB ;
IF STMP_ERROR THEN ERROR, ACC_ERROR = 'l1'B ;

If the termination criterion was through an END.X control variable
we also produce:
FREE NOT_DONE ;

7.2.5 COND_BLK — INITIATE A CONDITIONAL BLOCK

This procedure produces the code necessary to initiate a
conditional block. The conditional block will be executed within the
iteration only when the value of the indirect subscript is increased.
The indirect subscript node number is stored in the FOR_RANGE field of
the cond—-element being scanned. An IF-statement is generated to test
the above condition. Ingide the conditional block we will use a new
symbol for the indirect subscript. Por example, if X(I) is the indirect
subscript then we define a new subscript J=X(I). Let 'old-sub' denote
the subscript running in the major range, 1i.e. I. The 'new—sub’
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denotes the new representation of the indirect subscript, i.e. J. A
boolean variable, $B_X, indicates whether the conditional block should
be executed. The code to compute $B_X is generated by GEN_NODE when the
node X is scanned in the schedule. The new-sub is of the form $Xn where
'‘n' is a unique number associated with this conditional block. The
following declaration statements are issued:

DCL $Xn PIXED BIN ;

DCL $B_X BIT(1) :
The following codes is then produced:

IF $B_X THEN DO ;

new-sub = X( ..., old-sub) ;

7.2.6 COND_END - TERMINATE A CONDITIONAL BLOCK

This procedure produces the code at the end of a conditional block.
The above IF-statement has been generated by COND_BLK. Here we isgsue an
*‘END* statement to terminate the IF-statement.

7.3 GEN_NODE - CODE GENERATION FOR A NODE

This procedure generates the code associated with a schedule
node—element. It branches to different parts according to the types of
nodes.

7.3.1 PROGRAM HEADING

If the node is a module name (type MODL) we produce the code:
name: PROCEDURE OPTIONS(MAIN) ;
This code is routed to the file PL1DCL.

7.3.2 PILES

If the node is a file node (type PILE) we first generate three
names, "file_stem” is the file name with prefixes "NEW" or "OLD"
removed, if any. "name"” is the full name of the node, including all
prefixes. "file_suff” is the file_stem with the suffix of 'S' for
source file, 'T' for target file, and 'U' for update file (both source
and target). The following declaration statements are routed to PL1DCL
file.

DCL name_S CHAR( length) VARYING INIT(®' ') ;

DCL name_INDX FIXED BIN ;
"length” is the maxmimum length of records in the file. "name_S" is the
name of a buffer into which records in the file are read. (It is
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VARYING as the file may have more than one record type, with different
lengths.) "name_INDX" is a variable used to scan the buffer for packing
and unpacking the records (explained further later).
1. If the file is an input file we produce the statement:
OPEN FILE (file_suff) ;
2. If the file is a sequential input file and an end-of-file is not
explicitly mentioned by the user, we produce the declarations:
DCL ENDFPILESfile_stem BIT(1l) INIT(°'O°'B) ;
DCL $PSTfile_suff BIT(1) INIT('1'B) ;
routed to PLIDCL file. If the user explicitly mentioned the
end-of-file variable then these statements will be generated when the
declaration are generated for all variables by GPL1DCL.

The statements:
ON ENDFILE (file_suff)
BEGIN
ENDFPILESfile_stem = '1'B ;
name_S = COPY(' ',length) ;
END ;
are sent to PL1ON file. The purpose of these statements is to have
the file buffer filled with blank characters when an end of file
condition occurs.
3. If the file is an output file we produce the statement:
CLOSE PILE( file_suff) ;

7.3.3 RECORDS

If the node is a record (type RECD) we call GENIOCD to produce the
code for the reading or writing of records.

7.3.4 PIELDS

To process fields GEN_NODE calls procedure GENITEM. GEN_NODE also
calls CHECK_VIRT to find if the node has a windowed dimension. If the
field node is an indirect subscript, X, the following code is issued.

IP loop_var=1 THEN DO ;
bname = '1'B; rname = 0; END ;
ELSE IF X(loop_var )»>X(loop_var-1) THEN DO ;
bname = '1'B; rname = 0; END ;
ELSE DO ;
bname = '0'B; rname = 1; END ;
where loop_var is the current level loop variable, bname is of the form
$B_X, and rname is of the form SR X. Recall that bname indicates
whether the associated conditional block will be executed. rname will
be used to compute the index to reference an element such as
A(X(loop-var)) in the case that array A has a windowed dimension. This
is explained further later in connection with the code generation for
assertions.
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7.3.5 ASSERTIONS

If the node is an assertion we call the procedure GENASSR to
produce the code for an assertion.

7.4 GENASSR -~ GENERATING CODE FOR ASSERTIONS

This procedure generates code for assertions. The wain task of
GENASSR is to transform the syntax tree representation of the assertion
into a string representation acceptable by the PL/I compiler. The
transformation is carried out by a recursive climb on the syntax tree,
combining for each node the string representations of the descendant
subtrees into a string representation of the tree rooted at that node.
However, before performing the main task the procedure transforms
assertions containing conditional expressions into conditional
assertions. Thus, an assertion of the form:

Y = IP (IPF X>O0 THEN Y>0 ELSE Y<¢=0) THEN X*Y

ELSE -X*Y ;
will be transformed into:
IP X>O0 THEN IP Y50 THEN Y = X*Y ;
ELSE Y = -X*Y ;
ELSE IPF Y¢=0 THEN Y = X*Y ;
ELSE Y = -X*Y ;

The overall execution of GENASSR can therefore be summarily
described as: . .
1. Transform assertions with conditional expressions into conditional
assertions. .
2. Pomm the string representation of the assertion.

7.4.1 TRANSFORMING CONDITIONAL EXPRESSIONS

This task is carried out by the procedure SCAN which uses the
auxiliary procedure EXTRACT_COND.

7.4.1.1 SCAN (IN)

The procedure SCAN effects the complete <transformation of
assertions containing conditional expressions into conditional
assertions. The procedure is presented with an assertion pointed to by
IN, and returns a pointer to the transformed assertion. The steps in
this procedure are as follows:

1. Check the root of the tree pointed to by IN to see whether it is a
simple assertion or a conditional assertion. If it is a simple
assertion then go to step S.

2, We check next if the conditional assertion contains conditional
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expressions. A conditional assertion has the form:
IF COND THEN S1 ELSE S2
where S1, S2 are assertions.
SCAN calls EXTRACT _COND to check whether COND contains a conditional

expression. If COND contains a conditional expression, then
EXTRACT_COND returns C, L, and R which are the parts of COND as
follows:

COND = IF C THEN L ELSE R.
Otherxwise, go to step 4.
3. If a conditional expresaion is found in COND then:
3.1 SCAN then transforms the tree (pointed to by IN) into a tree IN)
which consists of the form:
IPF C THEN IF L THEN Sl
ELSE s2
ELSE IF R THEN S1
ELSE S2
3.2 SCAN calls SCAN(INl) recursively to further search for
conditional expressions in INl and return a transformed
conditional assertion.
3.3 The transformed assertion is returned by SCAN.

4., If COND does not contain embedded conditional expressions, then there
are two recursive calls to SCAN for the assertions Sl and S2 in IN,
SCAN then returns the following assertion and exits.

IF COND THEN SCAN(Sl) ELSE SCAN(S2)

5. In the case of a simple assertion:

Y=g,
SCAN calls EXTRACT_COND(E) to search for conditional expreasions in
E. If none found, then assertion Y = E is returned unchanged.

Otherwise, EXTRACT_COND returns C, L, and R which are the parts of E
as follows:
E = IPF C THEN L ELSE R,
6. If E contains conditional expression, then SCAN calls SCAN(IN2)
recursively, where IN2 points to a tree of an expression of the form:
‘IPCTHEN Y = L,
ELSE Y = R’
The return from the recursive call on SCAN is returned by SCAN as the
transformed assertion.

7.4.1.2 EXTRACT_COND(ROOT,COND, LEFT, RIGHT )

This procedure identifies and extracts the leftmost conditional
expression in a given expression pointed to by ROOT.

If a conditional expression is found the (pointer to the) condition
is returned in COND and its first (THEN) and second (ELSE)
subexpressions returned in LEFT and RIGHT respectively. If the analyzed
expression contains no conditional expression the procedure returns NULL
in CoND.

Its operation is as follows:

1. Inspect the top level node of the given syntax tree.
2, If it is a conditional expression, return respectively the condition,
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the subexpression following THEN,
* ELSE, then exit.

3. If the expression is a simple expression,
variable, return NULL and exit.

4, If the expression is a compound expression, scan each of its
descendants by calling EXTRACT_COND recursively. Consider the first
COND, LEPT, and RIGHT which are returned such that COND is not equal
to NULL. In general, a compound expression is of the form:

E = g(El,...,Em)
Assume that the recursive scanning of El, ..., Em produces first COND
not equal to NULL for Ei where l«=icsm, returning also the THEN and
ELSE subexpressions L, and R respectively. Then the current call for

and the subexpression following

i.e. a constant or a

E returns:
COND as the condition,
g(E, ...,Ei-1,L, ...,Em) as LEFT, and
g(El, ...,Ei-1,R, ...,Em) as RIGHT.

Thus the overall effect of EXTRACT_COND on an expression E ia to extract
a condition C if one exists in E (returned as COND), and then to compute
El when C is true, and E2 when C is false., El and E2 are returned in
LEFT and RIGHT respectively. Described in another way we look for C,
El, and E2 such that the following equivalence holds:

E = IF C THEN El ELSE E2 .
In particular this gives:

g(El, ...,Ei-1,(IPF C THEN L ELSE R),...Em) =

IF C THEN g(El, ...,Ei-1,L,...,Em)
ELSE g(E1, ...,Ei-1,R,...,Em).

7.4.2 PRINT -~ TRANSPORMING THE ASSERTION INTO STRING FORM

This procedure is presented with a pointer to an assertion syntax
tree and it converts the assertion tree into a string representation.

The procedure branches according to the types of the nodes in the
agsertion tree.

1, If the node is a subscripted variable A(El,....Em) we generate ¢the
string 'A('. We then scan each of the subscript expression El to Em
and add them to the string according to the following subcases:

1.1 If the dimension at position i corresponds to <the dimension
declared for repetition of a record and the variable A includes
the prefixed °*'NEXT', then
1.1.1 If the dimension is scheduled as a window of width k+1 we

insert the subscript value k+2.
1.1.2 If the dimension is scheduled as physical and the
expression Ei is a constant ¢, then insert the value of

o c+l, (See further below.)

: 1.1.3 If the dimension is scheduled as physical and Ei is an
expression we call PRINT(Ei) and insert the returned value
concatenated with ‘+1°'.

1.2 If the dimension at position i is scheduled as a window of width
k+1, in this case the physical allocation for the array dimension
is k42 elements with the k+lth element standing for the current
value and the ki+2th element standing for the field in the next
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record. The different subscript expressions are handled as

follows:

1.2,1 If it is a simple subscript then we insert an integer k+1
as the subscript.

1.2.2 If the subscript expression is I-c, then an integer k+l1-c¢
is inserted.

1.2.3 If the subscript expression is X(I), then Xk+1-SR X is
inserted where k+1-$R_X points to the element A(X(I)). If
X(I)=X(I-1) then SR X is equal to 1, and if X(I)»X(I-1l)
then SR X is equal to 0. (The code to compute SR X is
generated by GEN_NODE right after node X is scanned.)

1.2.4 If the subscript expression is X(I)-c, then k+1-SR X-c is
inserted as subscript.

1.2.5 1If the subscript expression is X(1-a), then
k-(X(I-1)-X(I-a)] is inserted as the subscript.
X(I-1)-X(I-a) is the offset of A(X(I-a)) to A(X(I-1)) which
is stored in the kth element of the window for the ith
dimension of array A.

1.2.6 If the subscript expression is X(1-a)-c, then
k-(X(I-1)-X(I-a)]-c is inserted as the subscript.

1.3 If the ith dimension of array A is physical and Ei is the
subscript expression, we call PRINT(Ei) and insert the returned
value.

2. Por all other compound nodes we call PRINT recursively to convert the
descendants and insert between them the string representation of the
separators, operators, and delimiters. The latters are stored in the
OP_CODE fields as integer codes. The integer codes are translated
into the operator representation using the array KEYS and then
inserted. .

3. Por atomic nodes we use the variable name either directly or through
its node number. Loop variables (subscripts) are accessed through
the level indication available in their IDWITH field which is used as
an index to the array LOOP_VARS. Punction names are retrieved by
their function number indexing the table PCNAMES.

7.5 GENIOCD - GENERATING INPUT/OUTPUT CODE

GENIOCD is invoked by CODEGEN upon scanning a schedule element
which corresponds to a record node. It accepts as input the node number
in the schedule element. GENIOCD generates PL/I READ, WRITE, or REWRITE
statements with the appropriate parameters, based on the attributes of
the file, as well as the control code or condition code associated with
the input/output operation.

Table 7.1 summarizes the different statements generated by GENIOCD
for the different cases. Each of the different cases in Table 7.1 shows
the conditions defining the case and the statements which are generated
for the case. The upper case letters represent the part of the actual
PL/1 string being generated, whereas the 1lower case letters are the
metanames of the items obtained from the program schedule elements.
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Several preparatory steps are taken before branching to the

different cases.

1.

Definition of names: We generate several variable names derived from
the record name that will be used in the code. Let the record name
be designated by rec.

1.1 If rec is of the form OLD.X or NEW.X we define recname as OLD X

or NEW_X respectively.

1.2 Othexwise we define recname as rec.

1.3 Recbhuf is defined as recname_S.

1.4 Recindx is defined as recname_INDX.
Consider now the file which is parent to rec. Let it be denoted by
1

il.
1.5 Set file_name to fil.
1.6 If £fil is of the form OLD.X or NEW.X set file_nawme to OLD_X or
NEW_X respectively and file_suff to file_nameU.
1.7 Othexwise set file_suff to file_namesS if the file is a source
and to file_nameT if the file is a target.
1,8 Set eof to ENDFILESfile_name.
1.9 Retrieve the keyname associated with the record, if one exists,
and assign it to key_name.
1.10 Set found to FOUNDSfile_name.
Issue the following declarations.
DCL recbuf CHAR (len_dat(n)) ;
DCL recindx FIXED BIN INIT(1l) ;
This declares a buffer for the record into which and out of which the
information will be read or written. ‘Len_dat(n)’' here gives the
buffer length.
If the record is an output record, the instruction for moving the
data from each field into the record buffer will be generated.
If the record is an output record and a SUBSET condition was
specified for it we enclose the code for writing the record by the
condition:
IP SUBSETSrec THEN DO ;
code
END ;

The procedure DO_REC produces the code for reading and writing of

recoxrds. It branches according to the cases in Table 7.1.
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Table 7.1 The Various cases of program 1/0 control
Case 1l: An Input Sequential and Nonkeyed Record.

The following code is produced:

IPF SPSTfile_suff THEN DO ;
READ PILE (file_suff) INTO (rxecbuf) ;
SPSTfile_suff = ‘'0’'B ;

END ;

ELSE recbuf = filebuf ;

recindx = 1 ;

IP ~ENDFILESfile_name THEN
READ PILE (file_suff) INTO (filebuf) ;

SERROR_BUF = recbuf ;

The movement of the data to the individual fields will be done in
conjunction with the nodes corresponding to the fields (see
GENITEM). The next record is always read into f£file buffer so <that

we can unpack the data for the MNEXT record.
Case 2: Input, Sequential and Keyed Record.

Ensure that the following reclarations have been issued:
DCL POUNDSrec BIT(1l) ;
DCL PASSEDSrec BIT(1l) ;
Issue now the code:
POUNDSTeC, PASSEDSTEC = 'Q'B ;
DO WHILE(~ENDFILESfile_name & ~PASSEDSrec) ;
READ PILE (file_suff) INTO (recbuf) ;
(code for extracting the key field)
IF keyname = POINTERSrec THEN
POUNDSTEOC, PASSEDSTOC = °'1'B ;
ELSE IF keyname > POINTERSrec THEN
PASSEDSreC = '1°'B
END ;
recindx = 1 ;
Case 3: Input, Nonsequential (ISAM), Keyed record.

Verify that the declaration
DCL POUNDSTec BIT(1l) ;

has been issued. Then issue the code:
FOUNDSTec = '1°'B ;
ON KEY (file_suff) POUNDSrec = '0'B ;
READ PILE( file_suff) INTO(recbuf)

KEY( POINTERSrecC) ;
recindx = 1 ;
Case 4: Output, Sequential Recoxd.

Issue the following code:

recindx = 1
Call PACK procedure to pack ity fields into the record buffer.
issue the code:

WRITE PILE(file_suff) PROM(recbuf) ;

Case 5: Output, Nonsequential, Keyed and an Update Record (both NEW amnd

OLD specified)

Issue the following code:
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recindx = 1 ;
« Call PACK procedure to pack its fields into the record buffer. Then
issue the code:
REWRITE PILE(file_suff) FROM(recbuf)
KEY( POINTERSTOC) ;
Case 6: Output, Nonsequential and Keyed Record.

Issue the following code:
recindx = 1 ;
Call PACK procedure to pack its fields into the record buffer. Then
issue the code:
WRITE FILE(file_suff) PROM(recbuf)
KEY( POINTERSxeC) ;

t Tt T N p g

7.6 PACKING AND UNPACKING

Rk A et 2

o After a record is read we unpack its fields from the record buffer
o and place them in the respective declared structures. Similarly before
k : a record is written we pack its fields into the record buffer. The data

movement is performed by individual transfers of fields. The transfer
3 statements may be interleaved with other statements which control the
k iteration over respective fields®' dimensions. The transfer instructions
E for unpacking are generated elsewhere, in conjunction with the schedule
elements associated with the input field nodes. The code for packing an
output record is generated in GENIOCD and inserted right before the
record buffer is to be written out.

| 7.6.1 PACK ~ PACKING THE OUTPUT FIELDS

The procedure PACK is called by GENIOCD in the case of an output record.
It accepts a node number (NODES) as input. It checks the type of the
node NODES, If the node is a field, it calls DO_PFID to generate the
code for packing. Otherewise, it considers in turn each descendant of
the node NODES, For each descendant D it calls PACK1(D) recursively.
PACK1l: This procedure generates code for packing a node which may or
may not repeat,
1. If the node is a repeating group or a field we get the termination
criterion of the repetition.
1.1 Open a loop: Call procedure GENDO to genexrate the DO-statement
for opening the loop.
1.2 Call the subprocedures PACK to issue code for packing a single
o element of the node.
: J! 1.3 Call procedure GENEND to generate the code for terminating the
! loop.
- 2. If the node is not repeating then:
Call procedure PACK to generate the code for packing all the &
’ constituent members of this node.
DO_FLD: This procedure is responsible for producing code to pack a
field P into rxecord buffer. It uses the procedure PIELDPK to
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generate the following code.
SUBSTR( recbhbuf, recindx, lenstring) = F ;
recindx = recindx+lenstring ;
PIFLOPK is described further below.

7.6.2 GENITEM - UNPACKING THE INPUT FIELDS

This procedure is called to generate code for unpacking information
from an input buffer +to an input field. GEN_NODE calls GENITEM upon
scanning a schedule element of an input field. GENITEM accepts as input
the node number in the achedule element. The READ statement for reading
the record to a buffer is generated by GENIOCD when the record node is
scanned. GENITEM first finds for a recoxrd R the names of the input
buffer RS and the packing counter RINDX. Next, GENITEM calls an
auxiliary procedure FIELDPK, which generates the code for unpacking.

The GENITEM procedure is as follows:

1. Determine the name of the record containing the current field. ILet
it be rec. Then we construct a buffer name: rec S and a buffer
index name rec_INDX. let the field's name be in the variable
~field”,

2. If the correspornding field in the next record is referenced, then
call PIELDPK to unpack the field from the file buffer.

3. Call FIELDPK to generate the code for unpacking the field from the
recoxrd buffer.

7.6.3 FIELDPK - PACKING AND UNPACKING FIELDS

The procedure PFIELDPK produces the code for both the packing and
unpacking operation. Input parameters are the field name, buffer name,
record index name, and a code (CASE) to indicate whether the field has a
NEXT prefix.

1. If the length type of the field is fixed, i.e. specified in the data
description statements, we compute its length directly. If the
field's type is 'C', 'N', or 'P', denoting respectively character,
numeric or picture, we take the declared length. Otherwise we will
compute the length of the field in bytes from its declared length and
type. The string representing the length is stored in "lenstring”.

2. If the length of the field was declared by specifying lower and upper
bounds we check that there aexists a control variable of the form
LEN.field for this field. If none exists we issue the error wmessage:

PIELDPK: NO LENGTH SPECIFICATION FOR THE PIELD-field.
3, If a LEN.field control variable is found we set:
lenstring = LEN.field
The byte—-length of the field will be computed during run time,
4. If the field is an input field we generate the instruction:
UMSPEC( £i01d) = SUBSTR( rec_S,rec_INDX, lenstring);
If the same field in the next record is 1referred in the
specification, we will unpack the file Dbuffer to get the
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corresponding field in the next record. FPor output field we
generate:
SUBSTR( rec_S, rec_INDX, lenstring) = UNSPEC(field) ;
Here "field"” is the name properly subacripted and "lenstring” is the
length specification. If the field is of ¢type 'C', the UNSPEC
qualifications will be omitted.
5. If the CASE code indicates that the field name does not have prefix
NEXT then we generate the following code to update the buffer index:
rec_INDX = rec_INDX+lenstring ;
There is no need to update recINDX if the unpacking is for a NEXT
prefixed field.

7.7 GENERATING THE PROGRAM ERROR FILE

If a program error condition is induced during the execution of the
generated program, then an input record, read during the iteration
execution when the program error was induced ig written to an error
file, ERRORF. The required code for writing the bad input record to the
error file is generated by the routines OCODEGEN and GENIOCD. Por
example, the following PL/I code is included in PL1ON file:

ON ERROR BEGIN ;
WRITE PILE(ERRORF) FROM( SERROR_BUF) ;
GO TO SERR_LAB ;
END ;
After the GENIOCD generate the code to read a record from an input file
it also generates a statement to copy the input record into $SERROR_BUF.

7.8 GPL1DCL - GENERATING PL/I DECLARATION

This procedure generates the declarations for the data nodes
declaxed by the user and those added by the system. As noted
previously, some declarations are also generated by other procedures
during the code generation.

The main part of GPLIDCL is as follows:
1. Por each file F in the specification (available from the list PILIST)
call
DECLARE_STRUCTURE(P)
to declare F and all its descendants.
2. Por each node N in the specification which is an interim variable or
a control variable, call
DECLARE_STRUCTURE(N)
3. Por each subscript which has been used, issue the declaration:
DCL subname PFIXED BIN ;

- 185 -~




7.8.1 DECLARE_STRUCTURE — DECLARING A STRUCIURE

This procedure is called by GPLIDCL. The input is a file node
number. It declares the entire file structure. It issues the
declarative: DECLARE, and then proceed to call DCL_STR(N,1,0).

7.8.1.1 DCL_STR(N, LEVEL, SUX)

This recursive procedure produces a declaring-clause for each node
N in the structure. ‘'LEVEL' is the current level in the structure. SUX
is a termination criterion stating whether there is a next node on the
same level (younger brother) or a descendant.
1. Some Preliminary transformations are made on the declared node names.
1.1 Pile names of the form NEW.F and OLD.P are modified to NEW_F and
OLD_F respectively.
1.2 The group names, record names, or field names are reduced to
their stem (removing prefixes).
2. Por control variables the resulting declaration is:

For SIZE, and LEN names:
name PFIXED BIN,
while for all other names:
name BIT(1).
3. The declaration includes in general the following items:
LEVEL - The component level,
Name - The declared name.
Repetition ~ The number of physical storage elements.
Type - The data type.
The data type is determined as follows:
Por character fields - CHAR(len) [VARYING)

For numeric fields - PIC '99....9°'
For picture fields - PIC 'picture’
Por fixed binary — BIN PIXED( len, scale)
Por fixed decimal -~ DEC FPIXED( len,scale)

Por binary floating BIN FLOAT( len)

Por decimal floating — DEC PLOAT( len)
In the above 'len’ is the specified or default length for the field.
The VARYING option is taken if the length is specified (for strings)
by a minimal length and a maximal length.

Repetition is defined in STOTYP of the node subscripts of the
fields. If an array dimension is virtual we omit the repetition
indicator. If an array dimension is a window of width k+1, the
repetition is set to k+l. Otherwise, the array dimension must be a
physical dimension. The node subscript list of the £ield node is
scanned, and the repetition indicators for array dimensions are
concatenated and put into a variable REP. If R is not an ewpty
string, we will append the string '(REP)' after the declared field
name,

4, Por each of the descendants of the node M, call
DCL_STR(M, LEVEL+1, termination) recursively.
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7.9 CGSUM - CODE GENERATION CONCLUSION

CGSUM has the task of concluding the code generation phase. Pirst,
the different files with the generated PL/I program (PLIDCL, PL1ON,
PL1EX) are merged into one PL/I file (PL1PROG) which can be subsequently
compiled. Secondly, a Code Generation Summary Report is written which
lists the PL/I program. While the PL/I listing would not be of much use
to the average MODEL user, it is of interxest to the more sophisticated
user and can serve the system programmer for insigh. or debugging of the
MODEL system.
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